
. PROGRAMMER'S GUIDE

R
E

L
E

A
SE

Cross-Product BASIC Scripting Language

Copyright

Under the copyright laws, neither the documentation nor the software may be
copied, photocopied, reproduced, translated, or reduced to any electronic
medium or machine-readable form, in whole or in part, without the prior
written consent of Lotus Development Corporation, except in the manner
described in the software agreement.

Copyright 1994, 1995 Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142

All rights reserved. Printed in the United States.

Freelance Graphics, Lotus, Lotus Notes, and 1-2-3 are registered trademarks and
Lotus Forms, LotusScript, and Word Pro are trademarks of Lotus Development
Corporation. Macintosh is a registered trademark of Apple Computers,
Incorporated. MS-DOS and Windows are registered trademarks of Microsoft
Corporation. OS/2 is a registered trademark of International Business Machines
Corporation. Shapeware is a registered trademark and Visio is a trademark of
Shapeware Corporation. UNIX is a registered trademark of X/Open Company,
Limited.

1 Introduction 1-1. .
Learning About LotusScript 1-1. . . .

The LotusScript Programmer’s Guide . . 1-1. . . .
Code examples in this book 1-2. . . .
Typographical conventions 1-4. . . .

2 Creating, Compiling, and
Debugging Scripts 2-1. .
What Is a Script? . 2-1. . . .
Working in Your Script Editor 2-2. . . .

Entering statements in your script
editor . 2-2. . . .

Entering numbers 2-3. . . .
Entering strings . 2-3. . . .
Entering identifiers 2-4. . . .
Entering labels . 2-5. . . .
Entering keywords 2-5. . . .
Entering special characters 2-6. . . .

Compiling Scripts . 2-7. . . .
Creating and using compiled script

modules . 2-8. . . .
Debugging Your Application 2-9. . . .

3 Data Types, Constants, and
Variables . 3-1. .
Summary of LotusScript Data Types 3-2. . . .
Constants . 3-4. . . .

Built-in constants 3-4. . . .
Constants defined in LSCONST.LSS . 3-5. . . .
Product-specific constants 3-5. . . .
User-defined constants 3-5. . . .

Variables . 3-9. . . .
Declaring scalar variables explicitly . . 3-9. . . .
Declaring scalar variables implicitly . 3-14. . .
More about scalar variables 3-17. . .

Arrays . 3-19. . .
Fixed arrays . 3-22. . .
Dynamic arrays . 3-28. . .

Lists . 3-32. . .
Working with lists 3-35. . .

Variants . 3-37. . .
Boolean values . 3-40. . .
Dates . 3-41. . .
Referring to Variants 3-45. . .
Variants: a footnote on usage 3-46. . .

Data Type Conversion 3-46. . .
Explicit data type conversion 3-47. . .
Automatic data type conversion 3-48. . .

4 Procedures: Functions,
Subs, and Properties 4-1. .
Functions . 4-1. . . .

Declaring and defining functions 4-2. . . .
Declaring a function 4-4. . . .
Defining a function 4-6. . . .
Values that a function can manipulate 4-6. . . .
Assigning a function a return value . . 4-11. . .
Executing a user-defined function . . . 4-13. . .

Subs . 4-16. . .
Declaring and defining subs 4-16. . .
Executing a sub . 4-17. . .
Specialized subs . 4-19. . .

Properties . 4-20. . .
Declaring and defining properties . . . 4-21. . .
Using properties . 4-22. . .

5 User-Defined Data Types and
Classes . 5-1. .
Comparison of User-Defined Data Types

and Classes . 5-1. . . .
User-Defined Data Types 5-3. . . .

Defining user-defined data types 5-3. . . .
Declaring a variable of a user-defined

data type . 5-4. . . .
Referring to member variables 5-4. . . .

Contents iii

Contents

LotusScript Programmer's Guide
Please note that the page numbers listed in the Table of Contents refer to the page numbers that appear in the footers of the printed documentation. To navigate to a specific page, select the chapter and use the scroll buttons in the tool bar to go to the page.

Conserving memory when declaring
member variables 5-4. . . .

Working with data stored in files 5-6. . . .
Classes . 5-7. . . .

Benefits of classes 5-8. . . .
Types of classes . 5-9. . . .

Base classes . 5-9. . . .
Declaring member variables 5-9. . . .
Defining member properties and

methods . 5-10. . .
About Public and Private class

members . 5-13. . .
Referring to class members inside a

class's scope . 5-13. . .
Creating, Managing, and Deleting

Objects . 5-14. . .
Working with object reference

variables . 5-15. . .
Initializing member variables 5-18. . .
Referring to class members outside of

a class's scope . 5-18. . .
Testing object references 5-20. . .
Deleting objects . 5-21. . .
Managing memory for objects 5-22. . .

Derived Classes . 5-23. . .
Defining derived classes 5-25. . .
Defining derived class members 5-26. . .

Arrays and Lists of Classes 5-33. . .

6 Expressions and Operators . 6-1. .
Operators . 6-1. . . .

Numeric operators 6-3. . . .
String operators . 6-11. . .
Precedence and associativity 6-16. . .

7 Directing Traffic Within an
Application 7-1. .
Flow of Execution . 7-1. . . .
Flow Control Statements 7-3. . . .

If...Then...Else statement 7-4. . . .
If...Then...ElseIf statement 7-6. . . .
Select Case statement 7-8. . . .
GoTo and If...GoTo...Else statements . 7-11. . .
On...GoTo statement 7-13. . .

GoSub, On...GoSub, and Return
statements . 7-14. . .

Exit statement . 7-16. . .
End statement . 7-18. . .
Do statement . 7-19. . .
While statement . 7-23. . .
For statement . 7-23. . .
ForAll statement . 7-29. . .

8 Error Processing 8-1. .
Managing Run-Time Errors 8-2. . . .

The On Error and Resume statements 8-2. . . .
Informational functions: Err, Erl,

Error, and Error$ 8-2. . . .
Managing the error number and

message: the Err and Error
statements . 8-2. . . .

How errors are handled 8-3. . . .
Using the On Error and Resume

Statements . 8-4. . . .
Error-number constants 8-6. . . .
Multiple On Error statements 8-7. . . .
On Error Resume Next 8-9. . . .

Error-Handling Routines Outside
Procedures . 8-9. . . .

Resuming execution in a calling
procedure . 8-11. . .

Using the Informational Functions 8-13. . .

9 Reaching Out 9-1. .
Working with Lotus products 9-1. . . .

Product classes and objects 9-1. . . .
Determining which product file is

being used . 9-5. . . .
Interacting with the User 9-6. . . .
Reading and Writing Files 9-9. . . .

Opening files . 9-10. . .
Reading from files and writing to

them . 9-10. . .
Closing files . 9-12. . .

Interacting with Other Programs 9-13. . .
Functions and statements for

interacting with other programs . . 9-13. . .
OLE Automation . 9-15. . .
Dynamic Data Exchange (DDE) 9-17. . .

iv LotusScript Programmer’s Guide

Calling C Functions . 9-17. . .
Declaring C functions 9-18. . .
Passing arguments to C functions . . . 9-18. . .
Extended example 9-21. . .

Index

Contents v

Chapter 1
Introduction

LotusScript™ is a version of BASIC that offers not only the standard capabilities of
structured programming languages like Pascal and C, but a powerful set of language
extensions that enable object-oriented application development within and across
products as well.

Learning About LotusScript
Lotus provides the following documentation for LotusScript:

The LotusScript Programmer’s Guide, a general introduction to LotusScript that
describes the language’s basic building blocks and how to put them together to
create applications.

The LotusScript Language Reference, a comprehensive summary of the LotusScript
language, presented in A-Z format. The LotusScript Language Reference is available
as online Help in all Lotus® products that support LotusScript and is also
available in print.

The documentation that accompanies each of the Lotus products that support
LotusScript. This documentation describes the application development
environment as well as the various extensions to the language that the individual
product provides.

The LotusScript Programmer’s Guide
The LotusScript Programmer’s Guide covers the following topics:

Chapter 1: Introduction

A summary of the contents of this book and its typographic conventions.

Chapter 2: Creating, Compiling, and Debugging Scripts

The anatomy of a LotusScript application and the environment in which you
create, run, debug, and save a LotusScript application.

Chapter 3: Data Types, Constants, and Variables

A survey of the kinds of values that LotusScript recognizes and the data structures
you can use to manipulate those values in an application.

1-1

Chapter 4: Procedures: Functions, Subs, and Properties

How to write user-defined procedures to modularize the operations that an
application performs.

Chapter 5: Creating User-Defined Data Types and Classes

How to create and use two kinds of data structure, the user-defined data type and
the class.

Chapter 6: Expressions and Operators

How to build, evaluate, and perform operations on expressions.

Chapter 7: Directing Traffic Within an Application

How to manage flow control in an application through looping and branching
operations.

Chapter 8: Error Processing

How to trap errors and make an application take appropriate action when it
encounters an error.

Chapter 9: Reaching Out

How to make an application communicate with the end user, with other
applications, and with the operating system.

Code examples in this book
This book contains numerous programming examples that illustrate specific features
of LotusScript and show how you can use the language to perform a variety of
common tasks. Each example consists of one or more lines of LotusScript code in the
following order:

Statements and directives that apply to a whole module (for example, a Use or
Option Declare statement)

Declarations and definitions of language elements intended to be available
throughout a module (for example, a class definition or a module-level variable
declaration)

Executable code not contained in a procedure (for example, a Call statement)

1-2 LotusScript Programmer's Guide

The linear format in which code examples appear shows each example’s underlying
logic and design but only partly reflects the organization of a real-world LotusScript
application. For instance, the following example prompts the user for an integer and
then calls a procedure that displays the cube of that integer. This example contains an
Option Declare statement, a module-level procedure definition, and three lines of
executable code outside the procedure:

Option Declare
Sub PrintCube(X as Integer)
 Print X ^ 3
End Sub
Dim anInt As Integer
anInt% = CInt(InputBox$("Enter an integer: "))
Call PrintCube(anInt%)

Unlike the examples in this book, a LotusScript application is object-event driven: the
application performs the operation you specify when the user opens a document,
clicks a button, or enters a value in a text box (where document, button, and text box
are objects, and opening, clicking, and entering are events). A LotusScript application
typically consists of multiple event scripts, that is, different sets of LotusScript
statements associated with different events for different objects. This makes for a
modular, nonlinear organization of the application's code.

In striving to offer examples that are applicable to all products that support
LotusScript, the LotusScript Programmer’s Guide largely ignores the realities of
object-event organization, because products may define different sets of objects and
events and provide somewhat different programming environments.

This does not mean that you can't run the examples in the LotusScript Programmer’s
Guide in your Lotus product’s programming environment. In general terms, you can
turn an example in this book into a LotusScript application by creating an object and
attaching the code to an event associated with that object. You run the example by
triggering that event. The details of how you do this depend on the programming
environment and the content and intent of the particular example.

If the product in which you are running LotusScript incorporates the LotusScript
Integrated Development Environment (IDE), you could run the preceding example by
doing the following:

1. Activate the Script Editor in the IDE for a new form.

2. Enter the Option Declare statement in Globals Options.

3. Enter the Dim statement in the Declarations section.

4. Enter the definition of PrintCube as a new sub.

5. Enter the last two statements of the example as the body of the Initialize sub.

6. Execute the example by loading the module (opening the document).

Chapter 1: Introduction 1-3

If the product in which you are are running LotusScript does not incorporate the IDE,
a slightly different strategy is required. For example, in Lotus Forms™, the simplest
way to run the preceding example is to do the following:

7. In the Designer, display the script editor and navigate to the Form object’s
Declarations procedure.

8. Enter the Option Declare statement, the definition of PrintCube, and the Dim
statement in the Form object’s Declarations procedure.

9. Enter the last two lines of the example in the Form object’s NewForm procedure.

10. Switch to Filler mode to run the example.

See your product’s documentation for details on writing and running LotusScript
applications in its programming environment.

Typographical conventions
The LotusScript Programmer’s Guide follows certain typographical conventions in its
syntax diagrams and code examples. These conventions are summarized in the
following two tables. The first table lists the conventions for syntax diagrams, and the
second lists the conventions for code examples.

Typeface or character Meaning Example and comment

Bold Items in bold must be
entered as shown.
Case is not
significant.

End [returnCode]
The keyword End is required.

Italics Items in italics are
placeholders for
values that you
supply.

End [returnCode]
You can specify a return code by entering a value
or expression after the keyword End.

Square brackets [] Items enclosed in
square brackets are
optional.

End [returnCode]
You can include a return code or not, as you
prefer.

Vertical bar | Items separated by
vertical bars are
alternatives: you can
choose one or
another.

Resume [0 | Exit | label]
You can include either 0, the keyword Exit, or a
label, or none of these elements, as part of the
Resume statement.

Continued

1-4 LotusScript Programmer's Guide

Typeface or character Meaning Example and comment

Braces { } Items enclosed in
braces are
alternatives: you have
to choose one. Items
within braces are
always separated by
vertical bars.

Exit { Do | For | ForAll | Function | Property |
Sub }
You have to enter one of the following keywords
after the keyword Exit: Do, For, ForAll, Function,
Property, or Sub.

Ellipsis (...) Items followed by an
ellipsis can be
repeated. If a comma
precedes an ellipsis
(,...), you have to
separate repeated
items by commas.

ReDim arrayName(subscript,...)
You can specify multiple subscripts in a ReDim
statement.

Item Convention Example

Apostrophe (') Introduces a comment. ' This is a comment.

Underscore (_) Signifies that the current line of
code continues on the following
line.

Dim anArray(1 To 3, 1 To 4) _
 As String

Colon (:) Separates discrete statements on
the same line.

anInt% = anInt% * 2 : Print anInt%

Keyword Begins with a capital letter. May
contain mixed case.

Print UCase$("hello")

Variable Begins with a lowercase letter.
May contain mixed case.

anInt% = 5

Procedure Begins with a capital letter. May
contain mixed case.

Call PrintResults()

Chapter 1: Introduction 1-5

Chapter 2
Creating, Compiling, and Debugging Scripts

This chapter describes, in general terms, how to use your script editor to write and
modify scripts, how to compile scripts, and how to use your debugger to locate
problems in the logic of your applications. The environment in which you write,
debug, and run scripts depends on your Lotus product. To learn about your product’s
programming environment, see your product documentation.

What Is a Script?
A script is composed of statements in the LotusScript language. An application is a
collection of scripts that have been compiled and can be run by a user.

The Lotus product in which you are working provides objects that you use as building
blocks to create an application. Each object has an associated set of events. Each event
indicates that an action in an application has occurred. You write scripts to define
responses to these events. For example, when the user clicks a command button,
LotusScript runs the script that you defined for that command button’s “click” event.

A Lotus product or the system can also initiate events. For example, a database sort
operation is an event that is internal to a database application.

You write scripts in your script editor, using the LotusScript language and the
properties, methods, and events defined for your product’s objects. Some products
can automate parts of the scripting process, restricting or eliminating the need to use
parts of LotusScript. See your product documentation for more information.

2-1

Working in Your Script Editor
Use your script editor to view, write, and modify scripts. Your script editor includes
standard editor features, such as cut, copy, and paste. You can also move from one
script to another using the controls in your script editor.

You write a script in a space associated with an object and an event; LotusScript then
attaches your script to the object and event. After you select the object and event to
which you want to attach a script, type the instructions you want to execute when the
event occurs. For more information on your product extensions, see the product
documentation.

Note From the script editor in many Lotus products, you can highlight a product
object's property or method and press F1 to display a Help topic about that term.
Similarly, you can highlight a LotusScript keyword and press F1 to display a Help
topic about the keyword.

Entering statements in your script editor
A script is composed of one or more statements in the LotusScript language. Each
statement can consist of keywords, operators, literals, identifiers, and punctuation,
written according to the syntax rules for that statement.

The following illustration shows several ways to enter statements in your script editor:

Keep the following in mind when you enter statements in the Script Editor.

Enter statements as lines of text. Each text element is a LotusScript keyword,
operator, identifier, literal, or special character.

Scripts can include blank lines.

You can enter text at the left margin or indented without affecting its meaning.

Separate text elements with white space such as spaces or tabs. Extra white space
helps make statements more readable, but it has no effect.

Statements typically appear one to a line. A newline marks the end of a statement,
except for a block statement, which appears on multiple lines and is delimited by
two or more keywords. The beginning of the next line starts another statement.

2-2 LotusScript Programmer’s Guide

Use an underscore (_) to continue a statement to the next line. Precede the
underscore character (_) by white space. Only white space or same-line
comments (those preceded with an apostrophe) can follow the underscore on the
line. You cannot continue a line within a literal string or a comment.

Separate multiple statements on a line with a colon (:), except in the IDE.

Entering numbers
Enter numbers in scripts according to the rules in the following table:

Kind of literal number Example Constructing numbers

Decimal integer 777 The legal range is the range for Long values. If the
number falls within the range for Integer values, its data
type is Integer; otherwise, its data type is Long.

Decimal 7.77 The legal range is the range for Double values. The
number’s data type is Double.

Scientific notation 7.77E+02 The legal range is the range for Double values. The
number’s data type is Double.

Binary integer
(base 2)

 &B1100101 The legal range is the range for Long values. A binary
integer can have 32 binary digits of 0 or 1. Values of
&B100000 ... (31 zeroes) and larger represent negative
numbers.

Octal integer
(base 8)

&O1411 The legal range is the range for Long values. An octal
integer can have 11 octal digits of 0 to 7. Values of
&O20000000000 and larger represent negative numbers.
Values of &O40000000000 and larger are out of range.

Hexadecimal integer
(base 16)

&H309 The legal range is the range for Long values. A
hexadecimal integer can have eight hexadecimal digits of
0 to 9 and A to F. Values of &H80000000 and larger
represent negative numbers.

Entering strings
A string is a set of characters enclosed in quotation marks (""), vertical bars (| |), or
open and close braces ({ }).

Keep the following in mind when you enter strings in a script:

Strings enclosed in vertical bars or braces can span multiple lines.

To enter a closing delimiter character ", |, or } as text in a string delimited by that
character, enter the character twice. To enter the { character as text in a string,
enter it once. For example, the statement Print {foo{8}} prints foo{8}.

Chapter 2: Creating, Compiling, and Debugging Scripts 2-3

Enter "" to specify the empty string.

You cannot nest strings that are delimited by vertical bars, braces, or double
quotation marks.

 The following illustration shows some examples of strings.

Entering identifiers
An identifier is the name you give to a variable, a constant, a type, a class, a sub, or a
property. An identifier can also be used as a label if you omit the data type suffix
character.

Here’s how to construct an identifier:

The first character in an identifier must be a letter (upper or lower case).

The remaining characters can be letters, digits, or the underscore character.

You can append a data type suffix character (one of the characters %, &, !, #, @,
and $) to an identifier.

The maximum length of an identifier is 40 characters, excluding the optional suffix
character.

Identifiers are case-insensitive. For example, MyVariable is the same name as
myvariable.

Identifiers can have characters with ANSI codes above 127 (that is, characters
outside the ASCII range).

2-4 LotusScript Programmer’s Guide

Escape character for illegal names
Some Lotus-product classes and OLE classes define properties or methods whose
identifiers contain illegal LotusScript characters. Lotus-product variable names may
also include illegal LotusScript characters. In these cases, prefix the illegal character
with a tilde (~), the Escape character, to prevent error messages. For example:

Call ProductClass.$MyMethod ' Illegal
Call ProductClass.~$MyMethod ' Legal

Entering labels
A label gives a name to a statement. You can use the following statements to transfer
control to a labeled statement by referring to its label:

GoSub...Return
GoTo
If...GoTo...Else
On Error
On...GoSub...Return
On...GoTo
Resume

The following rules apply to constructing labels:

A label can be any name (up to 40 characters).

A label can appear only at the beginning of a line; it labels the first statement on
the line.

A label can appear on a line by itself; this labels the first statement following the
line.

A statement can have more than one label preceding it; but the labels must appear
on different lines.

A given label cannot label more than one statement in the same procedure.

A label cannot include a data type suffix character.

Entering keywords
A keyword is a word with a fixed spelling and a particular meaning in the LotusScript
language. It is distinguished from an identifier, a word whose spelling and meaning
you choose. The keywords name LotusScript statements, built-in functions, predefined
constants, and data types. Keywords are “reserved words”: their meaning is specified
by LotusScript, and they cannot be used with any other meaning in a script. The one
exception to this rule is that most keywords can be used as names to name variables
within a user-defined data type, and variables and methods within a class.

For a list of LotusScript keywords, see the LotusScript Language Reference.

Chapter 2: Creating, Compiling, and Debugging Scripts 2-5

Entering special characters
You use special characters, such as punctuation marks, to delimit literal strings,
designate variables as having particular data types, punctuate lists such as argument
lists and subscript lists, punctuate statements, and punctuate lines in a script.

The following table shows LotusScript special characters and describes their usage:

Character Description

" (quotation mark) Opening and closing delimiter for a string on a single line.

| (vertical bar) Opening and closing delimiter for a multiline string. To include a vertical
bar in the string, use double bars (| |).

{ } (braces) Delimits a multiline literal string. To include an open brace in the string,
use a single open brace ({). To include a close brace in the string, use
double close braces (}}).

: (colon) Separates multiple statements on a line, except in the IDE. When following
an identifier at the beginning of a line, designates the identifier as a label.

$ (dollar sign) When suffixed to the identifier in a variable declaration, declares the data
type of the variable as String. When prefixed to an identifier, designates the
identifier as a product constant.

% (percent sign) When suffixed to the identifier in a variable declaration, declares the data
type of the variable as Integer. When suffixed to either the identifier or the
value being assigned in a constant declaration, declares the constant's data
type as Integer. Also, designates a compiler directive, such as %Rem.

& (ampersand) When suffixed to the identifier in a variable declaration, declares the data
type of the variable as Long. When suffixed to the identifier or assigned
value in a constant declaration, declares the constant’s data type as Long.
Also, prefixes a binary (&B), octal (&O), or hexadecimal (&H) number, or
designates the string concatenation operator in an expression.

! (exclamation
point)

When suffixed to the identifier in a variable declaration, declares the data
type of the variable as Single. When suffixed to the identifier or assigned
value in a constant declaration, declares the constant's data type as Single.

(pound sign) When suffixed to the identifier in a variable declaration, declares the data
type of the variable as Double. When suffixed to the identifier or the
assigned value in a constant declaration, declares the constant’s data type
as Double. When prefixed to a literal number or a variable identifier,
specifies a file number in certain file I/O statements and functions.

@ (at sign) When suffixed to the identifier in a variable declaration, declares the data
type of the variable as Currency. When suffixed to the identifier or the
assigned value in a constant declaration, declares the constant’s data type
as Currency.

* (asterisk) Specifies the string length in a fixed-length string declaration, or designates
the multiplication operator in an expression.

Continued

2-6 LotusScript Programmer’s Guide

Character Description

() (parentheses) Groups an expression, controlling the order of evaluation of items in the
expression. Encloses an argument in a sub or function call that should be
passed by value. Encloses the argument list in function and sub definitions,
and in calls to functions and subs. Encloses the array bounds in array
declarations, and the subscripts in references to array elements. Encloses
the list tag in a reference to a list element.

. (period) In dot notation for a user-defined data type variable or an object reference
variable, references members of the type or object. In dot notation for a
product object reference, designates the selected product object. In dot
notation for an object reference within a With statement, designates the
object referred to by the statement. Also, designates the decimal point in a
floating-point literal value.

.. (two periods) Within a reference to a procedure in a derived class that overrides a
procedure of the same name in a base class, specifies the overridden
procedure.

[] (brackets) Delimits names used by certain Lotus products to identify product names.

, (comma) Separates arguments in calls to functions and subs, and in function and sub
definitions. Separates bounds in array declarations, and subscripts in
references to array elements. Separates expressions in Print and Print #
statements. Separates elements in many other statements.

; (semicolon) Separates expressions in a Print statement or a Print # statement.

' (quote) Indicates the beginning of a comment. The comment continues to the end
of the line on which the comment begins.

_ (underscore) Continues a line of code from one line to the next when preceded by at
least one space or tab.

Use white space to separate names and keywords, or to make the use of a special
character unambiguous. Avoid using white space around a special character, such as a
data type suffix character, appended to a name.

If you want to use special characters as ordinary text characters, enter the special
characters in strings.

Compiling Scripts
An application must be compiled before it will load and execute. Both the uncompiled
and compiled versions of an application file have an extension that is specific to your
Lotus product.

When you compile a script, LotusScript displays messages about any errors it finds,
listed in the order in which they are found. A compile-time error occurs when a script
contains an error that LotusScript detects during compilation. For example, an If...End

Chapter 2: Creating, Compiling, and Debugging Scripts 2-7

If statement might be missing its required End If clause, or a keyword might be
misspelled. Another type of compile-time error is the syntax error, where LotusScript
punctuation or grammar is used incorrectly. Examples of syntax errors include
forgetting to match parentheses or forgetting to terminate a string with a quotation
mark.

As you fix errors, you can recompile until there are no more errors in the script. You
can compile your scripts explicitly, using your product’s menu commands, or you can
let the compiler compile them automatically when you save the application or when
you run it. For information about whether your product allows you to compile scripts
explicitly or implicitly, see the product documentation.

Creating and using compiled script modules
Some Lotus products allow you to write and compile script modules as files with an
.LSO extension and then use these files in your applications. This feature lets you
create one copy of a compiled script module to use in multiple applications.

You can use your script editor, or any text editor, to create the script. The script can
contain declarations, subs, and functions, including the definition and declarations of
product classes, properties, subs, and functions.

To use a compiled LotusScript module, put a LotusScript Use statement in a script that
includes declarations. For more information, see the product documentation.

If you place the Use statement in a declarations section, any public declarations, subs,
and procedures in the .LSO file are available to all the scripts in the corresponding
module. If your Lotus product provides a Public script, place the Use statement in this
script to make Public declarations and procedures in the .LSO file available to all
scripts in the application.

2-8 LotusScript Programmer’s Guide

If you change the file name or file extension of the .LSO file after you compile it,
LotusScript will not be able to use the script module. The original file name is
embedded in the compiled module. To change the file name, you must rename the
source file and compile the .LSO file.

Debugging Your Application
Your debugger helps you find errors in the logic of your application. If your
application compiles without errors but does not yield the results you expect, your
debugger can help you locate the place in your scripts where something went wrong.

When you run an application with your debugger, the application is in one of three
states:

Running: Application scripts run uninterrupted until LotusScript reaches a
breakpoint or Stop statement. A breakpoint is a statement at which you want to
interrupt application execution.

Interrupted: LotusScript interrupts application execution and passes control to
your debugger.

Stepping: LotusScript passes control to the application scripts and then back to
your debugger after executing a single statement in a script.

When you debug an application, some Lotus products allow you to inspect variables
and edit their values. For more information, see the product documentation.

Chapter 2: Creating, Compiling, and Debugging Scripts 2-9

Chapter 3
Data Types, Constants, and Variables

This chapter provides information about LotusScript constants and variables and the
data types of the values that they can represent. It covers the following topics:

Overview of constants and variables, scope and lifetime

Summary of the data types that LotusScript recognizes

Constants: built-in and user-defined constants

Variables: the scalar types, explicit and implicit declarations, and a sampling of the
LotusScript functions that apply to scalars

Arrays: fixed and dynamic arrays

Lists

Variants: declaring and referring to variables of type Variant, using Variants to
manipulate Boolean and date/time values

Data type conversion: explicit and automatic data type conversion

A LotusScript application can manipulate data of several types through the use of
constants and variables. Constants and variables are identifiers that name locations in
memory that hold (or can hold) data of one or another of the types that LotusScript
recognizes. (It is common shorthand to say that a constant or variable “holds” or “has”
such and such a value when what is actually meant is that the constant or variable
names the location that contains the value in question.) Constants differ from variables
in that the value that a constant represents must be known at compile time and can’t
be changed—it must remain constant—while the application is running, while a
variable can refer to a value (or a set of values) that can change while the application is
running.

Like other identifiers, constants and variables have a scope and a lifetime. Scope refers
to the area of an application in which an identifier can be referred to, that is, the area
in which the identifier is accessible, or known. Lifetime (or persistence) refers to the
period during which the identifier is available to the application. When you define a
constant or declare a variable, LotusScript assigns it a default scope and lifetime,
which in some cases you can override by including the appropriate keyword in the
definition or declaration.

3-1

The specific areas of an application in which a constant or variable (or any other
identifier) is known, and for what duration, depend on the application model that a
product and its programming environment support. The following diagram shows the
generic application model assumed throughout this book and the areas in which you
can define constants and declare variables:

Summary of LotusScript Data Types
LotusScript recognizes the following numeric and string data types (called scalar data
types):

Data type Value range Size

Integer
Signed short integer

-32,768 to 32,767 2 bytes

Long
Signed long integer

-2,147,483,648 to 2,147,483,647 4 bytes

Single
Single-precision floating-point

-3.402823E+38 to 3.402823E+38 4 bytes

Double
Double-precision floating-point

-1.7976931348623158+308 to
1.7976931348623158+308

8 bytes

Continued

Application

Module

Procedure

Class

User-
defined
data type

Module

Module

Variable
Constant

Constant

Variable

Variable

Variable

Procedure

3-2 LotusScript Programmer’s Guide

Data type Value range Size

Currency
Fixed-point integer scaled to 4 decimal
places

-922,337,203,685,477.5807 to
922,337,203,685,477.5807

8 bytes

String 0 to 32K characters
(0 to 64K bytes)

2 bytes/ character

Besides these scalar data types, LotusScript supports the following additional data
types and data structures:

Data Type or structure Description Size

Array A set of elements having the same data type.
An array can comprise up to 8 dimensions
whose subscript bounds can range from
-32,768 to 32,767.

up to 64K bytes

List A one-dimensional set whose elements have
the same data type and are referred to by name
rather than by subscript.

up to 64K bytes

Variant A special data type that can contain a value of
any scalar value, array, list, or object reference.
Variants can also hold Boolean and date/time
values.

16 bytes

User-defined data type A set of elements of possibly disparate data
types. Comparable to a record in Pascal or a
struct in C.

up to 64K bytes

User-defined class A set of elements of possibly disparate data
types together with procedures that operate on
them.

Object reference A pointer to an OLE Automation object or an
instance of a product-defined class or
user-defined class.

4 bytes

Arrays, lists, and Variants are described in detail later in this chapter. For more
information about user-defined data types, user-defined classes, and object references,
see Chapter 5, “Creating User-Defined Data Types and Classes.”

Chapter 3: Data Types, Constants, and Variables 3-3

Constants
Strictly speaking, a constant names a location in memory that contains a value that is
known at compile time and cannot be changed while the application is running. In less
formal terms, a constant is a named fixed value. Constants are defined in the following
ways:

By LotusScript, internally. These constants are built into the language and are
always available to an application.

By LotusScript, in the file LSCONST.LSS. These constants are available in a
module only when the module explicitly includes the file in which they are
defined.

By an individual product, in a file that that product makes available. The file in
which these constants are defined may or may not have to be included explicitly in
the module in which you want to use them.

By the application developer, in an application module or in a file that you
explicitly include in a module.

Built-in constants
LotusScript provides an internal value named EMPTY, and five other constants with
predefined values, which are summarized in the following table:

Constant Value

EMPTY The initial value of a Variant variable. LotusScript converts EMPTY to the
empty string ("") in string operations and to 0 in numeric operations. To
test a variable for the EMPTY value, use the IsEmpty function. You cannot
assign EMPTY as a value.

NOTHING The initial value of an object reference variable. As soon as you assign a
specific reference to the variable, the variable no longer contains
NOTHING. You can explicitly assign the value NOTHING to an object
reference variable. To test a variable for the NOTHING value, use the Is
operator.

NULL A special value that represents unknown or missing data. Various
operations return a NULL value, but you can only assign the NULL value
to a Variant variable. To determine if a variable contains the NULL value,
use the IsNull function.

PI The ratio of the circumference of a circle to its diameter. This constant can
be assigned to any numeric variable, or used in numeric expressions.

TRUE and FALSE The Boolean values True and False, which LotusScript evaluates as the
integer values -1 and 0, respectively. These values are returned by all
comparison and logical operations. In an If, Do, or While statement,
which test for TRUE or FALSE, any nonzero value is considered True.

3-4 LotusScript Programmer’s Guide

Constants defined in LSCONST.LSS
LotusScript provides a set of constants that you can use in place of numeric arguments
in certain LotusScript statements, such as MessageBox:

' Declare an Integer variable, theStr%,
' and assign it to the sum of two Integer constants.
Dim theStr%
theStr% = MB_YESNO + MB_ICONQUESTION
MessageBox "Do you want to continue?", theStr%, "Continue?

which is much more readable than

MessageBox "Do you want to continue?", 4 + 32, "Continue?

These constants are defined in the file LSCONST.LSS. Use the %Include directive to
incorporate this file into your application in a module that must be loaded when you
need to use the constants, which are all explicitly defined to be Public. The syntax for
including this file is:

%Include "LSCONST.LSS"

Product-specific constants
Individual Lotus products may provide additional constants that you can use by
including the file in which they are defined in your application with the %Include
directive. A product may also provide internally defined constants that are
automatically available to your application. Consult the product’s documentation to
learn about these constants.

User-defined constants
You can define your own constants within a module or a procedure. Such a constant
can be of any of the scalar data types that LotusScript recognizes. Use the following
syntax to define a constant:

[Public | Private] Const constName = expression

Chapter 3: Data Types, Constants, and Variables 3-5

The syntax elements in the definition of a constant are summarized in the following
table:

Element Description

Public, Private Only an option when you declare a constant at module level, not within a
procedure. Public means that the constant can be used outside the module in
which it is defined. Private means the constant can only be used inside the
module in which it is defined. Constants are Private by default.

constName The name of the constant. The name, which can include a data type suffix
character, must be a legal LotusScript identifier (see Chapter 2). A constant
cannot have the same name as another constant, variable, or procedure of the
same scope used in the same module.

expression An expression indicating the value of the constant. The expression can be a
literal or another constant. You can use arithmetic and logical operators in the
expression. The expression can contain a LotusScript function (such as Abs or
UCase$) if that function can be evaluated at compile time and its arguments
(if any) are constant.

You can define a constant to be of a particular data type by appending one or another
of the following data type suffix characters to constName:

Suffix Data type

% Integer

& Long

! Single

Double

@ Currency

$ String

For example:

' Define a String constant, MYNAME.
Const MYNAME$ = "Andrea"
' Define a Single constant, MYPERCENT.
Const MYPERCENT! = 0.125
' Define a Currency constant, MYMONEY.
Const MYMONEY@ = 123.45

Alternatively, if the constant is numeric, and expression is a numeric literal, you can
specify the particular numeric data type by appending the appropriate data type suffix
character to expression. For example:

' Define a Currency constant, MYCUR, with the value 123.45.
Const MYCUR = 123.45@

3-6 LotusScript Programmer’s Guide

If you don’t append a suffix character to constName or expression, LotusScript
determines the data type of the constant by the value of expression.

For a string, the data type is String.

For a Single or Double value, the data type is Double.

For an integer, the data type is Integer or Long, depending on the magnitude of
the value.

For example:

Const MYNAME = "Sara"
' MYNAME is a constant of type String.
Const MYDOUBLE = 123.45
' MYDOUBLE is a constant of type Double.
Const MYINT = 123
' MYINT is an constant of type Integer.
Const MYLONG = 123456
' MYLONG is a constant of type Long.

You can always include a data type suffix character when you refer to a constant in a
LotusScript application, whether or not you used the suffix character in the Const
statement that defined the constant. You need not use the suffix, though it makes your
code easier to read. But if you do, make sure that the suffix is the appropriate one.

For example:

Const MYADDRESS$ = "722 Smith Place"
Print MYADDRESS
' Output: 722 Smith Place

Const YOURADDRESS = "75 rue St. Viateur"
Print YOURADDRESS$
' Output: 75 rue St. Viateur
' Print MYADDRESS%, YOURADDRESS@ would cause an error.

Testing for the data type of a constant
You can ascertain a constant’s data type by calling either of two LotusScript functions:
TypeName and DataType. TypeName returns a string indicating the data type of the
expression being tested, and DataType returns a number representing the expression’s
data type. (For a complete listing of the values that TypeName and DataType return,
see the LotusScript Language Reference or online Help.) For example:

Const MYMONEY@ = 123.45
Const MOREMONEY = MYMONEY * 2
Print TypeName(MOREMONEY)
' Output: CURRENCY
Print DataType(MOREMONEY)
' Output: 6

Chapter 3: Data Types, Constants, and Variables 3-7

The scope of a constant
You can define a constant within a procedure or at module level (that is, outside the
definition of a procedure, user-defined data type, or class). A constant that you define
within a procedure is accessible only within that procedure though the procedure
itself may be available to the whole module or application. If that constant has the
same name as a constant or variable defined outside the procedure, LotusScript
interprets references inside the procedure to that name as applying to the constant
with the narrower scope, ignoring the existence of the constant with the greater scope.
For example:

Const MYINT% = 10
' This MYINT% is defined at module level.
Sub MySub
 Const MYINT% = 100
 ' This MYINT% is defined within a procedure.
 Print MYINT%
End Sub
Call MySub
' Output: 100
Print MYINT%
' Output: 10

By default, a constant that you define at module level is Private, that is, accessible only
within that module. You can override this default in either of two ways to make the
constant available to other modules in the application:

Include the keyword Public in the statement that defines the constant, for
example:

Public Const GLOBALINT% = 123

Include the Option Public statement at the beginning of a module that must be
loaded when the application runs. This makes all identifiers in the module Public
by default.

To access a Public constant defined in another module, you compile that module and
then refer to the compiled module in a Use statement in the accessing module. (This is
how you access any item defined as Public, whether a constant, variable, procedure,
user-defined data type definition, or class definition.) For example, to access the Public
constants in module A from module B, you compile module A and then include the
following statement in module B:

Use "A"

3-8 LotusScript Programmer’s Guide

Variables
Like a constant, a variable names an area of storage. Unlike a constant, however, the
value assigned to a variable can change during execution of an application.

You declare a variable to be of a particular type, which restricts the kind of value the
variable can hold. You also determine the scope and lifetime of a variable—when and
how long the variable exists and in what parts of your application it is accessible.
Typically, if you do not choose a particular type or scope for the variable, LotusScript
chooses a type and scope by default.

A variable name can be any valid LotusScript identifier. The name cannot be the same
as the name of another variable, constant, or procedure in the same scope used in the
same module.

A variable can be of any of the following data types or structures:

One of the scalar types that LotusScript recognizes: Integer, Long, Single, Double,
Currency, or String

An array or a list

A Variant

A user-defined data type, that is, a type defined with a Type...End Type statement

A class, that is, a class defined with a Class...End Class statement, or a class
defined by the Lotus product with which LotusScript is running

The next two sections of this chapter describe the two ways you can declare a scalar
variable in LotusScript: with an explicit statement or by implication. Subsequent
sections describe how to declare arrays, lists, and variables of type Variant. For more
information about user-defined data types and classes and the variables that are
associated with them, see Chapter 5 (“Creating User-Defined Data Types and
Classes”).

Declaring scalar variables explicitly
Declaring a variable creates an identifier, determines its scope and lifetime, specifies
the type of data that can occupy the location in memory to which it refers, and causes
LotusScript to write an initial value to that location. The recommended way to
accomplish all this is to declare the variable explicitly. You declare a scalar variable
explicitly with the Dim statement, or one of its variations. The variation you use
depends in part on the area of the application in which you declare the variable, and in
part on the scope and lifetime you want the variable to have.

Chapter 3: Data Types, Constants, and Variables 3-9

The following diagram summarizes the syntax for declaring a single scalar variable (in
this example, a variable of type String):

The syntax elements in the declaration of a scalar variable are summarized in the
following table:

Element Description

Dim Declares a variable with Private scope.

Public, Private Public declares a variable with Public scope. Private declares a variable
with Private scope.

Static Only applicable to variables declared inside a procedure. Static variables
retain their values (rather than going out of existence) between calls to the
procedure while the module in which the procedure is defined remains
loaded.

varName The name of the variable. At module level or within a procedure, varName
can end in one or another of the data type suffix characters that
LotusScript recognizes as such. This determines the type of data that the
variable can hold. You can append a data type suffix character to a
variable name when you declare it only if you do not include the As
dataType clause in the declaration.

Continued

3-10 LotusScript Programmer’s Guide

Element Description

As dataType Specifies the type of data the variable can hold. If you include this clause,
varName cannot end in a data type suffix character. This clause is required
in the declaration of a variable within the definition of a user-defined data
type or class, but optional in the declaration of a variable at module level
or within a procedure.

Whether or not you append a data type suffix character to the name of the variable
when you declare it, you can always do so (or not) when referring to an explicitly
declared scalar variable. For example:

Public firstName$
Public lastName As String
Dim age%
Dim money As Currency

firstName$ = "Roman"
lastName$ = "Minsky"
age% = 12
money@ = 150.75
Print firstName & " " & lastName & ", " & age &", $" & money
' Output: Roman Minsky, 12, $150.75
Print firstName$ & " " & lastName$ & ", " & age% &", $" & money
' Output: Roman Minsky, 12, $150.75

String variables
A variable of type String contains a sequence of characters in the Unicode character
set. Unicode is a character-encoding system that uses two bytes to represent each
character in the set. LotusScript converts input to Unicode format before compiling an
application.

Chapter 3: Data Types, Constants, and Variables 3-11

A String variable can be of variable or fixed length. The syntax for declaring a
variable-length String variable is shown in the preceding diagram. The syntax for
declaring a fixed-length String variable is shown below:

The charNum argument specifies that varName is a fixed-length String variable of
charNum characters.

When you assign a string to a fixed-length String variable, LotusScript truncates the
string or pads it to the declared length with trailing spaces if necessary.

3-12 LotusScript Programmer’s Guide

For example:

Dim myName$
Dim myTown As String
' myName and myTown are variable-length string variables.
Dim myState As String * 2
' myState is a 2-character fixed-length String variable.
Dim myZIP As String * 5
' myZIP$ is a 5-character fixed-length String variable.
' If myZIP$ is assigned a value of more than 5 characters,
' that value will be truncated to its first 5 characters.
myName$ = "Mark"
myTown$ = "Centerville"
myState$ = "MA"
myZIP$ = "02100-9999"
Print myName$
' Output: Mark
Print myTown$ & ", " & myState$ & " " & myZIP$
' Output: Centerville, MA 02100

Declaring more than one variable at a time
The Dim statement and its variations allow you to declare more than one variable at a
time at module level or within a procedure. At module level, the syntax is

{ Dim | Public | Private } varName1 [As dataType], varName2 [As dataType], ...

Within a procedure, the syntax is

{ Dim | Static } varName1 [As dataType], varName2 [As dataType], ...

The conventions for appending a data type suffix character to a variable name in the
absence of an As dataType clause (and not appending a data type suffix character in the
presence of an As dataType clause) are the same as in the declaration of a single scalar
variable. For example:

Dim aString$, anInt%, aDouble As Double, aCurrency@
aString$ = "Hello"
Print TypeName(aString$) & ": " & aString$
' Output: STRING: Hello
anInt% = 123
Print TypeName(anInt%) & ": " & anInt%
' Output: INTEGER: 123
aDouble# = 123.45
Print TypeName(aDouble) & ": " & aDouble#
' Output: DOUBLE: 123.45
aCurrency@ = 456.78
Print TypeName(aCurrency@) & ": " & aCurrency@
' Output: CURRENCY: 456.78

Chapter 3: Data Types, Constants, and Variables 3-13

Sub MySub
 Dim aString As String * 2, anotherString$, anInt%
 Static aDouble#, anotherDouble#

 aString$ = "Hi"
 Print TypeName(astring$) & ": " & aString$
 anotherString$ = "World"
 Print TypeName(anotherstring$) & ": " & anotherString$
 anInt% = 234
 Print TypeName(anInt%) & ": " & anInt%
 aDouble# = aDouble# + 1
 anotherDouble# = aDouble# * 2
 Print TypeName(anotherDouble#) & ": " & anotherDouble#
End Sub
Call MySub
' Output:
' STRING: Hi
' STRING: World
' INTEGER: 234
' DOUBLE: 2
Call MySub
' Output:
' STRING: Hi
' STRING: World
' INTEGER: 234
' DOUBLE: 4

Initial default values
When you declare a variable explicitly, LotusScript assigns it an initial default value:

Type of variable Initial value

Numeric
(Integer, Long, Single,
Double, Currency)

0

Variable-length String "" (the empty string)

Fixed-length String A string of the specified length, filled with Chr(0) (the NULL
character)

Declaring scalar variables implicitly
At module level or within a procedure, you can declare a variable implicitly by
assigning a value to an identifier that you have not previously declared, as in the
following example:

' Create an Integer variable without declaring it explicitly
' and initialize it to 1.
counter% = 1

3-14 LotusScript Programmer’s Guide

This has the same effect as the following explicit declaration and statement:

Dim counter%
counter% = 1

As with explicitly declared variables, the identifier has to be a legal one and not
already in use as the name of a constant, variable, or procedure in the same scope in
the same module. If you append a data type suffix character to the variable’s name
when you declare it, that suffix determines the variable’s data type. If you don't
append a data type suffix character, one of two things happens: if the name begins
with a character covered by an existing Deftype statement (see below), the variable is
implicitly declared to be of the data type appropriate to that statement. Otherwise, the
variable is implicitly declared to be of type Variant. The same rules apply to explicitly
declared variables if the declaration doesn’t contain an As dataType clause and the
variable name doesn’t end in a data type suffix character:

' Declare a variable of type Variant.
Dim myVarV

Implicit declaration is a handy shortcut when you're writing a simple script, saving
you the line of code that it would take to declare the variable explicitly. However, the
line of code you save by collapsing the declaration of a variable and the assignment of
a value into a single statement can be costly in an application of even moderate
complexity for two reasons:

When you implicitly declare a variable of one of the scalar types by including the
appropriate data type suffix character, LotusScript requires you to use that
character whenever you subsequently refer to that variable. Omitting the data
type suffix character in referring to such a variable produces an error. The
opposite is true of implicitly declared variables covered by Deftype statements:
they are declared without a data type suffix character, and you can’t include one
when you refer to them later in the application without producing an error.

If you omit the data type suffix character in an implicit declaration and the
identifier isn’t covered by an existing Deftype statement, you implicitly declare a
variable of type Variant, which is not necessarily what you want to do. While
useful in many ways, Variants take up more storage space in memory than the
other scalar types. And if you include a data type suffix character when referring
to a variable of type Variant, this produces an error.

Chapter 3: Data Types, Constants, and Variables 3-15

For example:

' Create the Integer variable anInt without explicitly
' declaring it and initialize it to 10.
anInt% = 10
Print anInt
' Produce "Name previously declared" error
' because LotusScript reads anInt (without suffix character)
' as an implicitly declared Variant variable, not
' the Integer variable anInt% (with suffix character).

' Create the Variant variable myVariantV without explicitly
' declaring it and initialize it to 10.
myVariantV = 10
Print myVariantV%
' Produce "Type suffix mismatch" error
' because myVariantV (without suffix character) was declared
' as type Variant, but the suffix character % is only appropriate
' for variables declared as type Integer.

If you want to disallow implicit declaration in a LotusScript application, you can do so
by including the Option Declare statement at module level in a module that you plan
to have loaded when the application runs. This statement tells LotusScript to require
explicit declarations for all your variables.

Deftype Statements
You use a LotusScript Deftype statement at module level to assign a default data type
to variables whose names begin with a particular letter of the alphabet, don’t end with
a data type suffix character, and don’t appear in an explicit declaration containing an
As dataType clause. The statement must appear before any variables are declared in the
module. The syntax is

Deftype range [, range]...

where type is a suffix such as Cur or Dbl, which is an abbreviation of the name of a
data type, and range is one or more consecutive letters of the alphabet. For example:

' Implicitly declared variables beginning with
' A, a, B, b, C, or c will be of type Integer.
DefInt A-C
' Create the Integer variable anInt on the fly
' and initialize it to 10.
anInt = 10
' Create a variable of type Variant on the fly
' and initialize it to 2. It's a Variant because
' it doesn't have a data type suffix character and doesn't
' begin with any of the characters in the specified
' DefInt range.
smallIntV = 2

3-16 LotusScript Programmer’s Guide

More about scalar variables
LotusScript provides a set of built-in functions that enable you to manipulate scalar
values in various ways. A built-in function is a named procedure that is part of the
LotusScript language and typically performs some operation on a value that you pass
it, producing a new value, called the return value. Most of these functions fall into one
or another of the following four categories:

Numeric

String

Date/time

Data type conversion

See the LotusScript Language Reference or online Help for a complete list and detailed
description of these functions.

The following examples contain a representative sampling of the LotusScript numeric
and string functions and illustrate some of the things you can do with them. Each
example is a Print statement, which causes LotusScript to display the return value of
the particular function.

Dim anInt As Integer
Dim aDouble As Double
aDouble# = -123.654
anInt% = 6

' Ascertain if aDouble# is a numeric
' data type: True (-1) or False (o).
Print IsNumeric(aDouble#)
' Output: True

' Ascertain if anInt% is positive (1),
' negative (-1), or neither (0).
Print Sgn(anInt%)
' Output: 1

' Print the absolute value of aDouble#.
Print Abs(aDouble#)
' Output: 123.654

' Print aDouble# rounded to 1 decimal place.
Print Round(aDouble#,1)
' Output: 123.7

' Print the nearest integer equal to or less than aDouble#.
Print Int(aDouble#)
' Output: -124

Chapter 3: Data Types, Constants, and Variables 3-17

' Print the integer part of aDouble#.
Print Fix(aDouble#)
' Output: -123

' Print the decimal part of aDouble#.
Print Fraction(aDouble#)
' Output: -.653999999999996

' Print the exponential (base e) of anInt%.
Print Exp(anInt%)
' Output: 403.428793492735

' Print a random whole number between 1 and 5
' by seeding the random number generator,
' calling the Rnd function to generate a random number,
' and performing various operations on the result.
' First, seed the random number generator.
Randomize
' Generate a random decimal number;
' take its decimal part and round it to one decimal place;
' multiply the result by 10 to make it a one-digit whole number;
' divide that number by 5 and add 1 to the remainder. The result
' is a random whole number between 1 and 5.
Print ((round(Fraction(Rnd),1) * 10) Mod 5) + 1
' Output: a random integer between 1 and 5.

Dim aString As String
Dim theNewString As String

' Assign aString the value (space) (space) abcdef (space) (space).
aString$ = chr$(32) + chr$(32) + "abcdef" + chr$(32) + chr$(32)
Print aString$
' Output: (space) (space) abcdef (space) (space)

' Ascertain the number of characters that aString$ contains.
Print Len(aString$)
' Output: 10

' Strip leading and trailing spaces from aString$.
aString$ = Trim$(aString$)
Print aString$
' Output: abcdef
Print Len(aString$)
' Output: 6

' Convert all the alphabetic characters in aString$ to uppercase.
aString$ = UCase$(aString$)
Print aString$
' Output: ABCDEF

3-18 LotusScript Programmer’s Guide

' Print the leftmost 3 characters of aString$.
Print Right$(aString$, 3)
' Output: ABC

' Print the position in aString$ where the substring "DE" begins.
Print InStr(aString$, "DE")
' Output: 4

' Print the first two characters of the substring that starts
' at the fourth character of aString$.
Print Mid$(aString$,4, 2)
' Output: DE

' Assign theNewString$ a value of a string of 10 asterisks.
theNewString$ = String$(10, "*")
Print theNewString$
' Output: **********

' Starting at the third character of aString$, replace the next
' 2 characters of aString$ with the first 2 characters of
' theNewString$.
Mid$(aString$,3,2) = theNewString$
Print aString$
' Output: AB**EF

Arrays
An array is a named collection of elements of the same data type, where each element
can be accessed individually by its position within the collection. If a scalar variable
names a single location in memory, an array variable names a series of locations in
memory, each holding a value of the same type—Integer or String, for example.

The position of an element in an array can be identified by one or more coordinates
called subscripts (or indexes). The number of subscripts necessary to identify an
element is equal to the number of the array’s dimensions. In a one-dimensional array,
a given element’s position can be described by one subscript; in a two-dimensional
array, it takes two subscripts to locate an element; in a three-dimensional array, it
takes three subscripts, and so on.

Chapter 3: Data Types, Constants, and Variables 3-19

For example, in a one-dimensional array whose elements are the names of the states of
the United States, a single subscript suffices to identify the position of a given state in
the collection:

Dim states(1 to 50) As String
states(1) = "Alabama"
states(2) = "Alaska"
states(3) = "Arizona"
' and so on.
Print states(2)
' Output: Alaska

In a two-dimensional array whose elements are the names of the ten most populous
cities in each state, two subscripts suffice to identify the position of a given city in a
given state: one of these identifies the state, and the other identifies the city:

Dim statesAnd10Cities(1 to 50, 1 to 10) As String
statesAnd10Cities(1,1) = "Alabama, Birmingham"
statesAnd10Cities(1,2) = "Alabama, Mobile"
' ...
statesAnd10Cities(2,1) = "Alaska, Anchorage"
statesAnd10Cities(2,2) = "Alaska, Fairbanks"
' and so on.
Print statesAnd10Cities(1,2)
' Output: Alabama, Montgomery

A three-dimensional array might contain the numbers of adult females, adult males,
and children in each of the ten most populous cities in each state:

Dim statesAnd10CitiesAndPeople(1 to 50, 1 to 10, 1 to 3) As Double
statesAnd10CitiesAndPeople(1,1,1) = 120748
' Number of adult males in Birmingham, Alabama.
statesAnd10CitiesAndPeople(1,1,2) = 145104
' Number of adult females in Birmingham, Alabama.
' ...
statesAnd10CitiesAndPeople(2,1,1) = 116381
' Number of adult males in Anchorage, Alaska.
statesAnd10CitiesAndPeople(2,1,2) = 109957
' Number of adult females in Anchorage, Alaska.
'...
Print StatesAnd10CitiesAndPeople(1,1,2)
' Output: 145104

A LotusScript array can have as many as eight dimensions.

The size of an array—the number of dimensions and the extent of each individual
dimension—is defined by the array’s bounds list. Each dimension has a lower bound
and an upper bound, specified as integer values.

3-20 LotusScript Programmer’s Guide

LotusScript supports both fixed and dynamic arrays.

You declare a fixed array once. At compile time, its size and storage requirements
are set according to the specifications of its bounds list and the data type of its
elements. At run time, storage is allocated for its elements, which are initialized
like any ordinary variable of that data type. The array cannot be resized while the
application is running.

You declare a dynamic array once, but it can be sized and resized many times
(with the ReDim statement) while the application is running. When you declare a
dynamic array, you specify the data type of its future elements but include an
empty bounds list, so LotusScript doesn’t allocate space in memory for those
elements. You resize a dynamic array at run time when you know how many
elements you want it to be able to hold, at which time LotusScript allocates the
necessary storage space. The values of the elements of the array can be
reinitialized or preserved each time you resize the array.

You declare an array with the Dim statement or one of its variations, as summarized
in the following diagram:

Chapter 3: Data Types, Constants, and Variables 3-21

The syntactic elements in the declaration of an array are summarized in the following
table:

Element Description

Dim Declares an array with Private scope.

Public, Private Public declares an array with Public scope. Private declares an array with
Private scope.

Static Only applicable to arrays declared inside a procedure. Static arrays retain
their values (rather than going out of existence) between calls to the
procedure while the module remains loaded.

arrayName The name of the array. At module level or within a procedure, arrayName
can end in one or another of the data type suffixes that LotusScript
recognizes. This determines the type of data that the array can hold. You
can append a data type suffix character to the name of an array only if you
do not include the As dataType clause in the declaration.

bounds A comma-separated list of bounds for each dimension of arrayName. The
bounds for each dimension are specified in the form:

[lowerBound To] upperBound

The lowerBound is the minimum subscript allowed for the dimension, and
upperBound is the maximum. If no lowerBound is specified, the lower
bound for the array dimension defaults to 0, unless the default lower
bound has been changed to 1 using the Option Base statement.

Array subscript bounds must fall in the range -32768 to 32767 inclusive.
For a fixed array, bounds must be integer constants, that is, values known
at compile time.

As dataType Specifies the type of data the array can hold. Required in the declaration of
an array within the definition of a user-defined data type or class, but
optional in the declaration of a variable at module level or within a
procedure. If you include this clause, arrayName cannot end in a data type
suffix character. dataType can be any of the scalar data types, Variant, a
user-defined data type, or an object reference.

Fixed arrays
Typically, you use a fixed array to manipulate a set of elements whose number is
known at compile time and not subject to change while the application is running. For
example, you might use a fixed array to match the names of employees with parking
spaces in the company's garage by floor, section, and space number, since the number
of floors, sections, and spaces is constant. A description of how you might do this will
illustrate how to declare a fixed array, assign values to its elements, and refer to those
values once they have been assigned.

3-22 LotusScript Programmer’s Guide

Suppose that the garage has three floors, each floor is divided into four equal sections,
and each section holds ten parking spaces. Here are two ways in which you might
organize the information about these 120 parking spaces and the employees assigned
to them:

' The first way uses a two-dimensional array.
' The array contains 480 elements, representing
' 4 pieces of information about each of 120
' parking spaces. When you refer to a given element
' in this array by its two subscripts, the first
' subscript identifies the parking space, and the
' second subscript identifies its floor, section,
' space number, or the person assigned to it.
Dim empSpacesA(1 To 120, 1 To 4) As String
empSpacesA(1,1) = "Floor 1"
empSpacesA(1,2) = "Section 1"
empSpacesA(1,3) = "Space 1"
empSpacesA(1,4) = "Maria Jones"
empSpacesA(2,1) = "Floor 1"
empSpacesA(2,2) = "Section 1"
empSpacesA(2,3) = "Space 2"
empSpacesA(2,4) = "Fred Smith"
' And so on down to the last space.
empSpacesA(120,1) = "Floor 3"
empSpacesA(120,2) = "Section 4"
empSpacesA(120,3) = "Space 10"
empSpacesA(120,4) = "Sal Piccio"
' Print information about Fred Smith's space.
Print empSpacesA(2,1) & " " & empSpacesA(2,2) & " " _
 empSpacesA(2,3) & " " empSpacesA(2,4)
' Output: Floor 1 Section 1 Space 2 Fred Smith

' The second way uses a three-dimensional array.
' The array contains 120 elements, each holding
' the name of the person assigned to a parking space.
' The three subscripts that identify a given element
' in this array correspond to the floor, section, and
' space to which that person has been assigned.
Dim empSpacesB(1 To 3, 1 To 4, 1 To 10) As String
empSpacesB(1,1,1) = "Maria Jones"
empSpacesB(1,1,2) = "Fred Smith"
' And so on down to the last space.
empSpacesB(3,4,10) = "Sal Piccio"
' Print information about Fred Smith's space.
Print "Floor 1 Section 1 Space 2 " & empSpacesB(1,1,2)
' Output: Floor 1 Section 1 Space 2 Fred Smith

Chapter 3: Data Types, Constants, and Variables 3-23

Each of these two approaches involves declaring a multidimensional fixed array
whose elements are of type String. While each array contains the same amount of
information about each parking space, they have a different number of dimensions
and elements, and they require you to use somewhat different strategies for entering
and retrieving the information about each parking space.

Declaring a fixed array
When you declare a fixed array, you specify the data type, the number, and the
organization of the elements that it will hold. You specify the data type of an array’s
elements in the As dataType clause of the declaration:

' Declare a one-dimensional array of strings.
Dim aStringArray(1 To 10) As String
' Declare a two-dimensional array of Variants.
Dim myVarArrayV(1 To 10, 1 To 10) As Variant

If the values that the array is going to hold are of one of the scalar data types that
LotusScript recognizes, you can omit the As dataType clause and instead specify the
data type by appending the appropriate data type suffix character to the name of the
array:

' Declare a one-dimensional array of strings.
Dim aStringArray$(1 To 10)
' Declare a two-dimensional array of integers.
Dim anIntArray%(1 To 10, 1 To 10)

If you omit both the suffix character and the As dataType clause, LotusScript checks to
see if the array name is covered by any applicable Deftype statement. If it is,
LotusScript defines the array’s elements to be of the appropriate data type. Otherwise,
LotusScript defines them to be of type Variant:

DefInt A-C
' Declare an array of integers.
Dim arrayOfInts(1 To 10)
' Declare an array of Variants.
Dim otherArrayV(1 To 10)

You specify the number of elements in an array and the number of dimensions along
which they are organized in the bounds list. The lower and upper bounds of an array
dimension can be any numeric constant between -32768 and 32767, inclusive, though
the constraint that an array can take up no more than 64K of storage means that the
range between lower and upper bounds in a multidimensional array must be smaller
than this. The memory needed for an array depends on the size of the array and the
storage needed for an element of the array. The size of an array is the total size of the
elements in it. It is the product of the sizes of all the dimensions. For example:

Dim arrayOfSingles(1 To 5, 1 To 10, 1 To 2) As Single

3-24 LotusScript Programmer’s Guide

The dimensional lengths are 5, 10, and 2, so arrayOfSingles holds 100 elements. The
actual storage needed for all of these elements is 400 bytes, since one value of Single
data type takes up four bytes of storage. Similarly,

Dim myStats(1980 To 1983, 1 To 4, -2 To 2) As Currency

Here the dimensional lengths are 4, 4, and 5 (1980, 1981, 1982, 1983; 1, 2, 3, 4; -2, -1, 0,
1, 2) for a total of 80 elements, each of which requires 8 bytes of storage. The amount
of memory necessary to store myStats is therefore 640 bytes.

You might use such an array like myStats to hold some number of values distributed
over a bell curve for each quarter of the years from 1980 to 1983 inclusive. The reason
why you might use the subscript ranges 1980 To 1983, 1 To 4, and -2 To 2 instead of 1
To 4, 1 To 4, and 1 To 5 is to have a mnemonic device to make entering and retrieving
values in the array more intuitive: to enter the value for the bottom of the curve in the
second quarter of 1982, you would use a statement like this:

myStats(1982, 2, -2) = 123.456

This example demonstrates that a dimension’s lower bound doesn’t have to be 1, and
that there are some cases where it is useful to have it be some other value. More often,
however, it is convenient to have a dimension’s lower bound be 1 or 0. LotusScript lets
you set 1 or 0 as the default lower bound for the dimensions of all arrays that you
declare in a module. You do this by including the appropriate Option Base statement
in the module. If you then omit the lower bound subscript for a dimension when you
declare an array, LotusScript automatically assigns it the appropriate value. Option
Base 0 is the LotusScript language default but your product may choose a different
setting, which you can override. For example:

Option Base 0
' Declare a 120 x 4 array both of whose dimensions
' are zero origin. This is the same as saying
' Dim empSpacesA(0 To 119, 0 To 3) As String
Dim empSpacesA(119, 3) As String

' Declare a 3 x 4 x 10 array all of whose dimensions
' are zero origin. This is the same as saying
' Dim EmpSpacesB(0 To 2, 0 To 3, 0 To 9) As String
Dim empSpacesB(2, 3, 9) As String

Chapter 3: Data Types, Constants, and Variables 3-25

Or:

Option Base 1
' Declare a 120 x 4 array both of whose dimensions
' are one origin. This is the same as saying
' Dim empSpacesA(1 To 120, 1 To 4) As String
Dim empSpacesA(120, 4) As String

' Declare a 3 x 4 x 10 array all of whose dimensions
' are one origin. This is the same as
' Dim EmpSpacesB(1 To 3, 1 To 4, 1 To 10) As String
Dim empSpacesB(3, 4, 10) As String

You can mix and match explicit and implicit lower bound specifications in a
declaration:

Option Base 0
Dim myStats(3, 1 To 2, -2 To 2) As Currency
' The first dimension of this 4 x 2 x 5 array is 0 To 3.

Dim arrayOfSingles(1 To 5, 9, 1) As Single
' The second and third dimensions of this 5 x 10 x 2 array
' are 0 To 9 and 0 To 1, respectively.

Use the LBound function to ascertain the lower bound of a dimension. The syntax is:

LBound (arrayName [, dimension])

where arrayName is the name of the array, and dimension is an integer that represents
the dimension whose lower bound you want to ascertain. The default value of
dimension is 1. So, for example:

Option Base 1
Dim myStats(1980 To 1983, 2, -2 To 2) As Currency
Print LBound(myStats)
' Output: 1980 (the lower bound of the first dimension).
Print LBound(myStats, 2)
' Output: 1 (the lower bound of the second dimension).

You can ascertain the upper bound of a dimension with the UBound function.

Referring to the elements of an array
How you assign or refer to values in an array depends on the data type of the array’s
elements. This section describes how to assign values and refer to array elements of
one or another of the scalar data types. For a description of how to do do this when an
array holds object references or values of a user-defined data type, see Chapter 5
(“Creating User-Defined Data Types and Classes”).

3-26 LotusScript Programmer’s Guide

You assign a scalar value to an element in an array with a statement of the following
form:

arrayName(S1, S2, S3,...) = value

where arrayName is the name of the array; S1, S2, S3,... are subscripts, one for each
dimension of the array; and value is the value you want to assign to the element whose
location in the array is defined by S1, S2, S3,... For example:

Option Base 1
Dim empSpacesB(3,4,10) As String
empSpacesB(1,1,) = "Maria Jones"
empSpacesB(1,1,2) = "Fred Smith"

Or:

Dim empSpacesA(120,4) As String
Dim counter As Integer
Dim LB1 As Integer
Dim LB2 As Integer
' Get lower bound of first dimension.
LB1% = LBound(empSpacesA, 1)
' Get lower bound of second dimension.
LB2% = LBound(empSpacesA, 2)
' For the first 40 elements in the first dimension,
' assign the value "Floor 1" to the first element
' in the second dimension; for the next 40 elements
' in the first dimension, assign the value "Floor 2"
' to the first element in the second dimension; and
' for the last 40, assign the value "Floor 3".
For counter% = LB1% to LB1% + 40
 empSpacesA(counter%, LB2%) = "Floor 1"
 empSpacesA(counter% + 40, LB2%) = "Floor 2"
 empSpacesA(counter% + 80, LB2%) = "Floor 3"
Next

You refer to the value of a scalar element in an array by the element’s subscripts, as in
the following example which searches for parking spaces to which no employee has
been assigned:

Option Base 1
Dim empSpacesB(3,4,10) As String
' Declare three String variables the quickest way
' to hold values for floor, section, and space.
Dim Flo$, Sec$, Spa$
' Declare six Integer variables the quickest way
' to hold values for the lower and upper bounds
' of the dimensions of empSpacesB for easy reference.
Dim LB1%, LB2%, LB3%, UB1%, UB2%, UB3%

Chapter 3: Data Types, Constants, and Variables 3-27

' Initialize the array. Typically you do this by reading
' the data from a file rather than by hard-coding the
' values.
empSpacesB(1,1,1) = "Maria Jones"
empSpacesB(1,1,2) = ""
empSpacesB(1,1,3) = "Joe Smith"
' And so on down to the last space.
empSpacesB(3,4,10) = "Sal Piccio"

' Assign the lower and upper bounds of each dimension
' of empSpacesB to a variable.
LB1% = LBound(empSpacesB, 1)
LB2% = LBound(empSpacesB, 2)
LB3% = LBound(empSpacesB, 3)
UB1% = UBound(empSpacesB, 1)
UB2% = UBound(empSpacesB, 2)
UB3% = UBound(empSpacesB, 3)

' Loop through all the array elements and print
' the floor, section, and location of each space
' that has the empty string—that is, no employee name—
' as its value. Convert the floor, section, and space
' numbers to strings by calling the cStr function and
' passing it the appropriate subscript.
For counter1% = LB1% to UB1%
 For counter2% = LB2% to UB2%
 For counter3% = LB3% to UB3%
 If empSpacesB(counter1%, counter2%, counter3%) = "" Then
 Flo$ = "Floor " & cStr(counter1%) & " "
 Sec$ = "Section " & cStr(counter2%) & " "
 Spa$ = "Space " & cStr(counter3%) & " "
 Print Flo$ & Sec$ & Spa$ & "is empty."
 End If
 Next
 Next
Next

Dynamic arrays
You use a dynamic array if you want to defer declaring the number of the array’s
elements and dimensions until run time, or if you want to vary the array size at one or
more points during execution of the application. To declare a dynamic array, you use
a Dim statement (or one of its variations) with an empty subscript list (empty
parentheses), as in the following example:

Dim myDynamicArray() As String

3-28 LotusScript Programmer’s Guide

Since this Dim statement contains no information about the array’s dimensions, the
statement simply reserves the name myDynamicArray as the name of a dynamic array
whose elements will be of type String: when you declare a dynamic array, it has no
dimensions or elements, and no storage is allocated for it. The array is unusable until
you specify its dimensions and their bounds in a ReDim statement, which defines the
array type and size, and allocates storage for the elements and initializes them. The
syntax of the ReDim statement is:

ReDim [Preserve] arrayName (bounds) [As dataType]

where arrayName is the name of an array that you previously declared with an empty
bounds list, bounds is the bounds list with which you now want to define the number
and extent of the array’s dimensions, and As dataType specifies the data type of the
elements that the array will hold. This must be the same as the data type in the
original Dim statement. The optional Preserve keyword instructs LotusScript to retain
the current values of the elements in arrayName. This is useful if you have declared a
dynamic array with Dim, defined its size with ReDim, assigned values to its elements,
and then want to expand the array to accommodate additional elements and assign
them values, as in the following example:

Option Base 1
' Declare a dynamic String array. Later, this is
' defined as a one-dimensional array whose elements
' are assigned values that the user enters.
Dim myNames() As String
Dim ans1 As Integer
Dim ans2 As Integer
Dim counter As Integer
Dim userInput As String
' Ask the user to enter a number and assign it to ans1%.
ans1% = CInt(InputBox$("How many names would you like to enter?"))
' Use ans1% as the upper bound of the array's only dimension.
ReDim myNames(ans1%)
' Elicit ans1% strings from the user, and assign them
' to successive elements in the array.
For counter% = 1 to ans1%
 myNames(counter%) = InputBox$("Enter a name: ")
Next
' Print the contents of the array on a single line
' with a space between the value of each element.
For counter% = 1 to ans1%
 Print myNames(counter%) " " ;
Next
' Output: a newline
Print ""

Chapter 3: Data Types, Constants, and Variables 3-29

' Ask the user for another number and assign it to ans2%.
ans2% = CInt(InputBox$("How many more names?"))
' If the number is greater than 0, resize the
' array, preserving its original values, so that the
' user can enter additional values.
If ans2% > 0 Then
 ReDim Preserve myNames(ans1% + ans2%)
 ' Elicit the new values and assign them to the
 ' elements that have been allocated after the old ones.
 For counter% = 1 to ans2%
 myNames(counter% + ans1%) = InputBox$("Enter a name: ")
 Next
 ' Print the contents of the array on a single line
 ' with a space between the value of each element.
 For counter% = 1 to ans1% + ans2%
 Print myNames(counter%) " " ;
 Next
 Print ""
End If

When you define the size of a dynamic array in the first ReDim statement that applies
to it, this permanently defines the number of dimensions for that array. At any later
time, you can change the values of any of the lower or upper bounds in the bounds list
as long as the ReDim statement you use to do so does not include the Preserve
keyword. When LotusScript encounters a ReDim statement that does not include the
Preserve keyword, it reallocates the amount of storage for the array that the bounds
list specifies and initializes the array’s elements to the default values appropriate to
their data type. If you do include Preserve in a ReDim statement, the only bound that
LotusScript lets you change (by incrementing) is the upper bound of the last array
dimension, in which case LotusScript allocates the appropriate amount of additional
storage and initializes the additional array elements. You cannot change the number of
dimensions of an array or the data type of its elements with a ReDim statement.

You can use the Erase statement to recover all of the storage currently allocated to a
dynamic array. Applied to a fixed array, the Erase statement only reinitializes the
array elements (to zeros, empty strings, EMPTY, or NOTHING, depending on the data
type of the array’s elements).

You can determine whether an identifier is the name of an existing array with the
IsArray function. You can determine whether an array is a fixed array or a dynamic
array with the DataType function, and you can ascertain the data type of an array’s

3-30 LotusScript Programmer’s Guide

elements with either the DataType or the TypeName function. You can use any of the
LotusScript built-in functions that operate on scalar values to operate on the elements
of an array, as in the following example:

Dim myDblArray(1 To 10) As Double
Dim anIntArray(1 To 10) As Integer
Dim counter As Integer

' Seed the random number generator.
Randomize
' Populate myDblArray with random numbers
' greater than 0 and less than 1.
For counter% = 1 To 10
 myDblArray(counter%) = Rnd()
Next

' Populate anIntArray with the elements of myDblArray
' after rounding to one decimal place, multiplying
' by 10, dividing by 10 and adding 1 to the remainder
' to yield a whole number between 1 and 10.
For counter% = 1 To 10
 anIntArray(counter%) = _
 ((Round(myDblArray(counter%), 1) * 10) Mod 10) + 1
Next

' Test the first element of anIntArray for its data type.
Print TypeName(anIntArray(1))
' Output: INTEGER

' Print the contents of myDblArray and anIntArray.
For counter% = 1 To 10
 print myDblArray(counter%) & " " & anIntArray(counter%)
Next
' Output: something like the following:
' .402520149946213 5
' .530154049396515 6
' .309299051761627 4
' 5.76847903430462E-02 2
' 2.41877790540457E-02 1
' .988802134990692 1
' .688120067119598 8
' .493557035923004 6
' .28598952293396 4
' .610387742519379 7

Chapter 3: Data Types, Constants, and Variables 3-31

Dim aStringArray(1 to 5, 1 to 2)
aStringArray(1,1) = "Roman"
aStringArray(1,2) = "Minsky"
aStringArray(2,1) = "Sara"
aStringArray(2,2) = "Nala"
aStringArray(3,1) = "Raymond"
aStringArray(3,2) = "Nala"
aStringArray(4,1) = "Sandra"
aStringArray(4,2) = "Brooks"
aStringArray(5,1) = "Simon"
aStringArray(5,2) = "Anders"
' Check to see if the first two characters of each element
' in the first dimension of aStringArray would be SA
' if they were uppercase. If so, print the corresponding
' element in the second dimension of the array, making
' its first character uppercase and the rest lowercase.
For counter% = 1 to 5
 If UCase$(Left$(aStringArray(counter%, 1), 2)) = "SA" Then
 Print UCase$(Left$(aStringArray(counter%, 2), 1)) _
 & LCase$(Mid$(aStringArray(counter%, 2), 2, _
 Len(aStringArray(counter%, 2))))
 End If
Next
' Output:
' Nala
' Brooks

Lists
A list is a one-dimensional collection of elements of the same data type. In certain
respects, a list resembles a one-dimensional dynamic array. LotusScript does not
allocate any storage space at compile time for the elements of a list, and you can
change the size of a list at any time while the application is running. Lists differ from
dynamic arrays in being restricted to a single dimension and in their ability to
automatically shrink or grow when elements are deleted from or added to them. A
further difference is that you access each element in a list by a unique String value,
called a list tag, rather than by a numeric subscript.

3-32 LotusScript Programmer’s Guide

You can declare a list anywhere that you can declare a dynamic array—at module
level, in a procedure, or in the definition of a class (but not in the definition of a
user-defined data type). You declare a list with the Dim statement or one of its
variations:

LotusScript follows the same conventions in assigning a data type to the elements of a
list as it does to the elements of an array if you omit the As dataType clause from the
Dim statement and do not include a data type suffix character in the list’s name. If the
name of the list is covered by a Deftype statement, then LotusScript assigns that data
type to the list's elements; otherwise, LotusScript makes them type Variant.

A list is initially empty. You add elements to it with statements of the following form:

listName(listTag) = value

where listName is the name of the list, listTag is a string that uniquely identifies the
element, and value is the value you want to assign to the element.

Chapter 3: Data Types, Constants, and Variables 3-33

List tags are case-sensitive or case-insensitive, depending on the setting for case
sensitivity in the module in which the list is declared. If case sensitivity is in effect for
the module, the list tags “A123” and “a123” are considered to be different tags;
whereas if case sensitivity is not in effect, they are considered to be the same and can
be used interchangeably. You can control whether case sensitivity is observed in string
comparison in a module by including the Option Compare statement in that module.
The syntax is

Option Compare { Case | NoCase | Binary }

If you include the Case or Binary keyword, string comparison is case-sensitive in the
module. NoCase means that such comparisons are case-insensitive. Option Compare
Case is the default.

The following example illustrates how to declare a list, add elements to it, and refer to
those elements. The elements in the list are of one of the scalar data types (String). See
Chapter 5, “Creating User-Defined Data Types and Classes,” for examples of lists
containing object references and values of a user-defined data type.

' Make string comparison case-insensitive
' in this module.
Option Compare NoCase
' Declare a list—myList—to hold first names.
' The list tags will be unique IDs.
Dim myList List As String
Dim newTag As String
Dim newValue As String
' Put some elements in the list.
myList("A1234") = "Andrea"
myList("A2345") = "Vera"
myList("A3456") = "Isabel"
' Ask the user to enter an ID and a name.
newTag$ = InputBox$("Please enter your ID:")
newValue$ = InputBox$("Please enter your first name:")
' Add a new element to the list with
' the user's ID as the list tag and the user's name as
' the value of the new element.
myList(newTag$) = newValue$
Print myList(newTag$)
' Output: the name that the user entered

3-34 LotusScript Programmer’s Guide

Working with lists
LotusScript provides a number of functions and statements for use with lists. These
include TypeName, DataType, IsList, IsElement, ListTag, ForAll, and Erase. You use
TypeName and DataType to ascertain the data type of a list’s elements. You use IsList
to determine whether an identifier is the name of an existing list, and you use
IsElement to determine whether an identifier is the list tag for an element in a
particular list.

TypeName(listName) returns a string of the form dataType LIST, for example,
STRING LIST, where dataType is the data type that appeared or was implicit in the
statement that declared the list.

TypeName(listName(listTag)) returns a string of the form dataType, for example,
STRING, where dataType is the data type of the specified list element. You might test
for the data type of an individual element in a list when the list has been declared to be
of type Variant, since Variants can hold data of a variety of types.

DataType(listName) returns an integer equal to 2048 + dataTypeCode, for example,
2056 (2048 + 8, that is, the code for List + the code for String).

DataType(listName(listTag)) returns an integer representing the data type code of the
specified element, for example, 8 (the code for String).

IsList(listName) returns True (-1) or False (0) depending on whether listName is a list.

IsElement(listName (stringExpr)) returns True (-1) or False (0) depending on whether
stringExpr is a list tag in listName. There are a variety of circumstances under which
you might want to test for the existence of a particular list tag in a list. Two cases are:

You want to add a new element to a list and want to make sure that the list tag
you plan to use isn’t already in use (because if it is, and you used it in an
assignment statement, you would overwrite the element that it identifies).

You want to refer to an element and want to make sure that the element exists
before doing so (because if you refer to a nonexistent list tag, LotusScript returns
an error).

ListTag(refVar) returns the list tag of the element currently being processed in a
ForAll loop. The refVar argument is the reference variable in a ForAll loop.

LotusScript executes the statements in a ForAll refVar In container block for each
element in the list identified by container (for a detailed description of ForAll, see
Chapter 7, “Directing Traffic Within an Application”).

Chapter 3: Data Types, Constants, and Variables 3-35

Erase listName removes all the elements in listName and reclaims the storage
previously allocated to them. Erase listName(listTag) removes the individual element
identified by listTag from the list and reclaims the storage previously allocated to it,
leaving the rest of the list intact.

These functions are illustrated in the following example, which removes an
employee’s access to a parking space when the user enters a valid employee name (a
valid list tag) and matching employee ID:

' Declare a list to hold employee IDs.
' The list tags will be the names of the employees.
Dim empList List As Double
' Make absolutely sure empList is Double.
If TypeName(empList) <> "DOUBLE LIST" Then
 Print "Warning: empList is " & TypeName(empList)
End If
If DataType(empList) <> 2053 Then
 Print "Warning: empList is " & CStr(DataType(empList))
 ' We expected 2053 (that is, 2048 + 5).
End If
' Declare a String variable for user name.
Dim ans As String
' Declare a Double variable for user ID.
Dim yourID As Double
' Declare an Integer variable to serve as a flag.
Dim found As Integer
' Create some list elements and assign them values.
empList("Maria Jones") = 12345
empList("Roman Minsky") = 23456
empList("Joe Smith") = 34567
empList("Sal Piccio") = 91234
' Ask the user to enter the name to be removed from the
' list of employees who have been assigned parking spaces.
ans$ = InputBox$("Which employee no longer needs a space?")
' Check to see if the employee's name appears as a list tag
' in the list. If not, display a message and stop. Otherwise,
' validate the employee's ID. If everything checks out,
' remove the employee item from the parking list.
If IsElement(empList(ans$)) = True then
 Print ans$ & " is a valid employee name."
 yourID# = CDbl(InputBox$("What's " & ans$ & "'s ID?"))
 ' The following ForAll block does two things:
 ' it checks to see if yourID# is a valid ID and,
 ' if so, if it matches the ID for the employee

3-36 LotusScript Programmer’s Guide

 ' whose name is ans$. If so, that element is removed
 ' (erased) from the list. The found% flag is initially
 ' FALSE (0). If yourID# is a valid ID, found% is set to
 ' TRUE (-1). The variable empID is the reference variable
 'in the ForAll loop.
 found% = FALSE
 ForAll empID In empList
 If empID = yourID# then
 found% = TRUE
 If ListTag(empID) = ans$ then
 Erase empList(ans$)
 ' Verify the removal of the list element.
 If IsElement(empList(ans$)) = FALSE then
 Print ans$ & " is no longer on the list."
 End If
 Else
 Print "Valid ID but wrong employee."
 End If
 ' No need to look farther for yourID#,
 ' so get out of the ForAll loop.
 Exit ForAll
 End If
 End ForAll
 If found% = False then
 Print "No such employee ID."
 End If
Else
 Print "No such employee."
End if

Variants
Variant is a special data type: variables of type Variant can hold values of any of the
data types that LotusScript recognizes, except for user-defined data types. The range
of operations you can perform on these variables is remarkably broad. A variable of
type Variant can hold any of the following:

A value of any of the scalar data types that LotusScript supports—Integer, Short,
Long, Double, Currency, String

A Boolean value (see “Boolean values” later in this chapter)

A date/time value (see “Dates” later in this chapter)

An array or list

Chapter 3: Data Types, Constants, and Variables 3-37

An object reference, that is, a pointer to an OLE Automation object or to an
instance of a product-defined or user-defined class

The NULL value

The EMPTY value

You declare a Variant variable the same way you declare a scalar variable—explicitly
or implicitly. By default, a variable that you declare without using an As dataType
clause or a data type suffix character character is of type Variant if no Deftype
statements are applicable. In this book, Variant variables appear with the suffix
character V to distinguish them from object reference variables or variables of some
user-defined data type. For example:

Dim myVariant1V As Variant
Dim myVariant2V
Public myVariant3V As Variant
myVariant4V = 123.45

When you declare a Variant variable explicitly, LotusScript initializes it to the special
value EMPTY. (Use the function IsEmpty to test a Variant variable for this value.)
When you assign a Variant variable a value, LotusScript determines the data type of
that value in either of two ways, depending on the available information:

If the data type of the value is known, then the value retains its original data type.

If the value is a literal, it is assigned a default data type appropriate to that value.

You can determine the data type of a value assigned to a Variant variable with the
DataType or TypeName function, as in the following example:

Dim numVarV As Variant
Dim anAmount As Currency
anAmount@ = 20.05
numVarV = anAmount@
Print TypeName(numVarV)
' Output: CURRENCY
numVar = 20.05
Print TypeName(numVar)
' Output: DOUBLE

3-38 LotusScript Programmer’s Guide

Under certain circumstances, the data type of a value assigned to a Variant variable
can change to accommodate the requirements of a particular operation on it. For
instance, in the following example the user enters a sequence of numeric characters,
which are then treated as a String value for some operations and as a numeric value
for others:

' Declare an Integer variable and assign it an initial
' value of FALSE (0). The application subsequently tests
' this variable, taking appropriate action depending on the
' variable's value—True (-1) or False (0).
quitFlag% = FALSE
Dim ansV As Variant
' Have the user enter some numeric characters.
ansV = InputBox("Enter a number.")
' See how many characters the user entered
' and assign that number to the Integer variable
' UB%. This involves treating the value of ansV
' as a String.
UB% = Len(ansV)
' Test the value of ansV to see if it can be
' interpreted as being of one of the numeric
' data types. If so, declare a dynamic array of Variants,
' then allocate space for as many elements as
' there are characters in ansV, and then assign
' the successive digits in ansV to the elements in
' the array.
If IsNumeric(ansV) = True then
 Dim digitArrayV() As Variant
 ReDim digitArrayV(1 To UB%)As Variant
 For x% = 1 to UB%
 digitArrayV(x%) = Mid(ansV, x%, 1)
 Next
Else
 Print "You entered some nonnumeric characters."
 quitFlag% = TRUE
End If

Chapter 3: Data Types, Constants, and Variables 3-39

' If ansV was able to be interpreted as a numeric,
' print its digits and their sum; then print
' the result of adding that sum to the original
' number that the user entered.
If quitFlag% = False Then
 Dim theSum As Integer
 ' theSum% is initialized to 0.
 For x% = 1 to UB%
 theSum% = theSum% + digitArrayV(x%)
 Print digitArrayV(x%) ;
 Next
 Print ""
 Print "Their sum is: " & theSum%
 Print "Their sum added to the original number is: " _
 & ansV + theSum%
End If
' Output, supposing the user enters 12345:
' 12345
' Their sum is: 15
' Their sum added to the original number is: 12360

Boolean values
LotusScript recognizes the Boolean values True and False, which it evaluates as -1 and
0, respectively. When you assign a Boolean value to a variable of type Variant, you can
display that value as text (“True” or “False”) or as an integer (-1 or 0), as the following
example shows:

Dim varV As Variant
varV = 1 > 2 ' The expression 1 > 2 (1 is greater than 2)
 ' evaluates to False, so varV is assigned a
 ' value of False.
Print varV
' Output: False
Print TypeName(varV) ' Output: BOOLEAN
Print DataType(varV) ' Output: 11
varV = True
Print varV ' Output: True
Print CInt(varV) ' Output: -1
Print varV + 2 ' Output: 1

3-40 LotusScript Programmer’s Guide

You can assign a Boolean value of True or False to a variable of any of the numeric
data types that LotusScript recognizes. LotusScript converts that value to an integer
(-1 or 0):

Dim anInt As Integer
varV = True
anInt% = varV
Print anInt%
' Output: 0
Print TypeName(anInt%)
' Output: INTEGER

LotusScript interprets the values -1 and 0 as True and False, respectively:

varV = -1
Print varV ' Output : -1
If varV = True Then Print "varV is True." Else Print "varV is False."
' Output: varV is True.

anInt% = 0
If anInt% = True then Print "True" Else print "False"
' Output: False

You can define a constant as a Boolean value:

Const YES = True
Print YES
' Output: True
Print TypeName(YES)
' Output: BOOLEAN

Dim varV As Variant
varV = YES
Print varV
' Output: True

Dim anInt As Integer
anInt% = YES
print anInt%
' Output: -1

Dates
LotusScript does not have a date/time data type as such: you can’t declare a variable
and restrict the type of data that it can hold to date/time values. However,
LotusScript does recognize dates internally and provides a set of functions for
entering, retrieving, and manipulating date/time values, which are stored as
eight-byte (double) floating-point values, in which the integer part represents a serial
day counted from 1/1/100 AD, and the fractional part represents the time as a

Chapter 3: Data Types, Constants, and Variables 3-41

fraction of a day, measured from midnight. The range of allowable values for a date is
-65,7434 (January 1, 100 AD) to 2,958,465 (December 31, 9999)—0 is December 30, 1899.
You use Variant variables to hold and manipulate date/time values, which you can
produce by calling one or another of the following functions:

Now, which returns the current date and time.

Date, which returns the current date without the time.

DateNumber, which returns the date corresponding to the year, month, and day
that you pass it as integer arguments. This function is particularly useful when
year, month, or day are run-time values assigned to variables.

DateValue, which returns the date corresponding to the date you pass it as a string
argument in any of the formats that LotusScript recognizes as valid ones for dates.

CDat, which converts the value you pass it to a date or date/time value.

You can use the DataType or TypeName functions to determine if a Variant variable
holds a date or date/time value. If it does, DataType returns a value of 7, and
TypeName returns DATE.

The following examples illustrate the various ways you can derive date and date/time
values, how you can assign them to Variant variables, and some of the operations you
can then perform on them, such as calculating a time span or determining the day of
the week on which a given date will fall.

 Suppose that today is October 26, 1994, and the time is 7:49:23 AM and you declare
the following variables:

Dim theInstantV As Variant
Dim theDateV As Variant
Dim theDateValV As Variant
Dim myDate As String

You can do the following sorts of date manipulation:

Get the current date and time by calling the function Now and then assign the
result to a Variant variable, the InstantV:

theInstantV = Now
Print theInstantV
' Output: 10/26/94 7:49:23 AM

Print the integers corresponding to the day of the month and the hour of the day:

Print Day(theInstantV) & " " & Hour(theInstantV)
' Output: 26 7

3-42 LotusScript Programmer’s Guide

 Get the current date and assign it to a Variant variable, theDateV:

theDateV = Date
Print theDateV
' Output: 10/26/94
Print theDateV - 1
' Output: 10/25/94

Convert the value of the current date to a value of type Double:

Print CDbl(theDateV)
' Output: 34633
' Convert a value of type Double
' to a date value, assign it to a
' Variant variable, and print it.
theDateV = CDat(34633)
Print theDateV
' Output: 10/26/94

Get the integer representation of the current year, month, and day; increment the
month and day values and assign the results to some Integer variables; pass them
to DateNumber, which calculates the date on the basis of those values and returns
it, assigning it to the Variant variable theDateV:

y% = Year(theDateV)
m% = Month(theDateV) + 1
d% = Day(theDateV) + 1
theDateV = DateNumber(y%, m%, d%)
Print theDateV
' Output: 11/27/94

Assign a string that can be interpreted as a date to a String variable, myDate$;
then convert it to a date/time value and perform a calculation on it (subtract a
day) and return the resulting date:

myDate$ = "October 28, 1994"
Print DateValue(myDate$) - 1
' Output: 10/27/94
theDateV = DateValue(myDate$)
' Check the data type of the value
' held by the Variant variable theDateV.
Print TypeName(theDateV)
' Output: DATE

Display the date in a particular print format:

Print Format(DateValue("10-18-14"), "mmm-d-yyyy")
' Output: Oct-18-1914

Chapter 3: Data Types, Constants, and Variables 3-43

Convert the date/time value of the current date to a value of type Double:

Print CDbl(Date)
' Output: 34633

Convert the date/time value of a particular date to a value of type Double by
passing it as a String to DateValue and then passing the result to CDbl, which
converts it to a value of type Double:

Print CDbl(DateValue("10-18-14"))
' Output: 5405
Print CDbl(Date) - CDbl(DateValue("10-18-14"))
' Output: 29228

Calculate the number of days between two dates:

theDateV = DateValue(Date)
theDateV = 10/26/94
y% = Year(theDateV)
m% = Month(theDateV) + 1
d% = Day(theDateV) + 1
theDateValV = DateNumber(y%, m%, d%)
' theDateValV = 11/27/94
Print CDbl(theDateValV) - CDbl(theDateV)
' Output: 32

Determine which day of the week a particular day falls on—Sunday is 1.

Print Weekday(theDateValV)
' Output: 1

The following table summarizes the functions and statements that LotusScript
provides for handling date/time values:

Function/Statement Purpose

CDat Function Converts a numeric or string expression to a date/time Variant value

Date Function Returns the system date

Date Statement Sets the system date

DateNumber Function Converts year, month, and day, to a date value

DateValue Function Converts a string to a date value

Day Function Returns the day of the month (1-31) from a date/time expression

FileDateTime Function Returns the date and time a file was most recently saved

Format Function Formats a number, a date/time value, or a string

Hour Function Returns the hour of the day (0-24) of a date/time expression

IsDate Function Returns True (-1) if a Variant date/time value, otherwise False (0)

Minute Function Returns the minute of the hour (0-60) from a date/time expression

Continued

3-44 LotusScript Programmer’s Guide

Function/Statement Purpose

Month Function Returns the month of the year (1-12) from a date/time expression

Now Function Returns the current system date and time

Second Function Returns the current second of the minute (0-59) from a date/time
expression

Time Function Returns the system date

Time Statement Sets the system date

TimeNumber Function Converts hours, minutes, and seconds to a fractional date/time value

Timer Function Returns the time elapsed since midnight in seconds

TimeValue Function Converts a string to a fractional date/time value

Today Function Returns the system date (equivalent to the Date function)

WeekDay Function Returns the day of the week (1-7) from a date/time expression

Year Function Returns the year as a four-digit integer from a date/time expression

Referring to Variants
As the preceding examples suggest, you assign values to Variant variables the same
way you assign values to variables of the other data types, the only difference being
that many of the rules governing the match of value to data type don’t apply. That is,
you can assign a Variant variable a value of any of the scalar data types where
assigning a value of one scalar data type to a variable of another scalar data type
would produce an error, as in the following example:

Dim myVariantV As Variant
Dim myVariantArrayV(1 to 5) As Variant
Dim aString As String
Dim anInt As Integer
myVariantV = 1234567
myVariantArrayV(1) = 1234567
myVariantV = "Hello"
myVariantArrayV(1) = myVariantV
aString$ = 1234567
' Produce an error, because 1234567 is not a String.
anInt% = 1234567
' Produce an error because 1234567 is too large
' to be treated as an Integer.

You refer to Variant variables in the same way you refer to variables of the data types
they represent.

Chapter 3: Data Types, Constants, and Variables 3-45

Variants: a footnote on usage
The Variant data type allows you a great deal of freedom in manipulating values of
different types (including Booleans and dates) without having to concern yourself
with type checking and compatibility issues. The Variant data type also makes it
possible for arrays and lists to hold items of different data types (rather than being
restricted to a single type) and significantly expands the range of data that you can
include in a user-defined data type. However, Variants take up more storage than
scalars, and operations involving Variants tend to be slower than those involving
scalars. Furthermore, it is easy to lose track of the specific data type of a value that you
are manipulating, which can sometimes produce unexpected results. It is therefore
advisable to consider whether you really need to use a Variant variable, rather than a
variable of one of the explicitly declared scalar types, to perform a given operation
with efficiency.

Data Type Conversion
There are a variety of circumstances under which it is necessary to treat a value of one
data type as though it were a value of a different data type or to perform an operation
on a value of one data type to produce a value of another data type. These two related
processes are referred to as data type conversion. Some form of data type conversion
is involved when you add two numbers of different data types together, print the
hexadecimal representation of a decimal number as a string, or calculate a date/time
value (by treating that value as though it were a number). Sometimes you have to
perform a data type conversion explicitly with one or another of the functions that
LotusScript provides for that purpose, sometimes LotusScript performs the conversion
automatically, and sometimes you can choose between the two methods of conversion.
For example:

Dim aString As String
Dim aDouble As Double
Dim aFloat As Currency
Dim aVariantV As Variant

aString$ = "123.45"
aDouble# = 678.90

' Explicitly convert a string to a Currency value.
' That is, assign the return value of the conversion
' function CCur, which takes a String argument, to a variable
' of type Currency. Without type conversion, the statement
' aFloat@ = aString$
' would produce an error.
aFloat@ = CCur(aString$)
Print aFloat@
' Output: 123.45

3-46 LotusScript Programmer’s Guide

' Automatically convert a Double value
' to a Currency value by assignment. You
' could explicitly convert the value of
' aDouble# to a Currency value before
' assigning it to aFloat@. You might do
' this for the purposes of documentation.
aFloat@ = aDouble#
Print aFloat@
' Output: 678.9

' Automatically convert a Variant value
' of type String to a Currency value by
' addition, and then convert the
' resulting Currency value to a value
' of type Double by assignment. You can make
' both of these conversions explicit if you want.
aVariantV = aString$
aDouble# = aVariantV + aFloat@
Print aDouble#
' Output: 802.35

Explicit data type conversion
LotusScript provides several built-in functions for explicitly converting a value’s data
type. For a complete list and detailed description of these functions, see the LotusScript
Language Reference or online Help. The following example includes a sampling of these
functions and illustrates their use:

Dim aString As String
Dim anInt As Integer
Dim aDouble As Double
Dim myFixedPoint As Currency
Dim aVariantV as Variant

aString$ = "123"
' Convert the string "123" to a value of type Double.
aDouble# = CDbl(aString$)

' Convert the value of aDouble# to a string
' in hexadecimal notation.
aString$ = Hex$(aDouble#)
Print aString$
' Output: 7B

' Add the prefix &H to that string, to
' prepare the string for conversion to a
' hexadecimal number.
aString$ = "&H" & aString$

Chapter 3: Data Types, Constants, and Variables 3-47

' Convert the string "&H7B" to an integer,
' add 12.46 to that integer, explicitly
' convert the result to a value of type Currency,
' and assign it to a variable of type Currency.
' If you omit the step of explicitly converting
' the integer to a value of type Currency, the
' conversion happens automatically when the
' assignment takes place.
myFixedPoint@ = CCur(CInt(aString$) + 12.46)
Print myFixedPoint@
' Output: 135.46

' Explicitly convert a value of type Currency
' to an integer, with automatic rounding off,
' and assign the result to a variable of type
' Integer. If you don't explicitly convert
' the Currency value to an integer,
' conversion (with rounding) happens
' automatically when the assignment takes place.
anInt% = CInt(myFixedPoint@) + 300
Print anInt%
' Output: 435

' Convert an integer to a date value
' and assign it to a Variant variable.
aVariantV = CDat(anInt%)
Print format$(aVariantV, "mm/dd/yyyy")
' Output: 03/10/1901

' Convert the date, format it, and assign the
' result to a String variable.
aString$ = Format$(aVariantV, "mmm-dd-yyyy")
Print aString$
' Output: Mar-10-1901

Automatic data type conversion
As mentioned earlier, LotusScript sometimes automatically converts values from one
data type to another. This happens under the following circumstances:

You assign a value of one numeric data type to a variable of a different numeric
data type. In this case, LotusScript converts the data type of the value being
assigned to the data type of the variable to which it is being assigned, if possible.
For example: aDouble# = anInteger% assigns the value of the integer variable
anInteger% to the double floating-point variable aDouble#, with the necessary
conversion taking place automatically.

3-48 LotusScript Programmer’s Guide

You perform an arithmetic or comparison operation involving values of different
numeric data types. When two numeric values with different data types are used
as operands on either side of an arithmetic operator, LotusScript converts the data
type of one operand to the data type of the other operand before the operation is
evaluated, if possible. For example: aVariantV = anInteger% + aDouble# adds the
values of anInteger% and aDouble#, treating them both as values of type Double.
The result is then assigned to a Variant variable of type Double.

When you compare two values of different numeric data types, LotusScript treats
them as being of the same data type for the purpose of comparison. In the
following example, the values of the variable anInt% and the variable myLong&
are both treated as being of type Long:

If anInt% > myLong& Then
 Print "The value of anInt% is greater than the value of myLong&."
End If

You increment the value of a Variant variable of some numeric type beyond the
allowable limit for values of that type. For instance, in the following example, the
statement aVariantV = aVariantV + 5 assigns a value of type Long, rather than a
value of type Integer, to the Variant variable aVariantV because the largest value
an Integer can have in LotusScript is 32767:

aVariantV = 32767
Print TypeName(aVariantV) ' Output: INTEGER
aVariantV = aVariantV + 5
Print TypeName(aVariantV) ' Output: LONG

You add or concatenate the values of two Variant variables, one of which is of
type String and the other of which is one of the numeric data types.

The following examples illustrate these various scenarios.

' This example illustrates the automatic conversion
' of decimal numbers to integers that happens when you perform
' integer division and when you assign a decimal number value
' to an integer variable.

Dim anInt As Integer
Dim aDouble As Double
' Do floating-point division.
anInt% = 12/7
Print anInt%
' Output: 2
aDouble# = 12/7
Print aDouble#
' Output: 1.71428571428571

Chapter 3: Data Types, Constants, and Variables 3-49

' Do integer division.
anInt% = 12\7
Print anInt%
' Output: 1
aDouble# = 12\7
Print aDouble#
' Output: 1

' Do floating-point division.
anInt% = 12.5/2
Print anInt%
' Output: 6
aDouble# = 12.5/2
Print aDouble#
' Output: 6.25

' Do integer division.
anInt% = 12.5\2
Print anInt%
' Output: 6
aDouble# = 12.5\2
Print aDouble#
' Output: 6

In the next example, the value 1.6 is assigned to X. Since X is a variable of type Integer,
1.6 is converted to an integer before the assignment takes place. Conversion of
floating-point values (Single and Double values) to integer values (Integer and Long
values) rounds the value to the nearest integer, which is 2 in this case.

When 1.5 is assigned to Y, LotusScript rounds it to 2, the nearest even integer. A
floating-point value exactly halfway between two integer values is always rounded to
the nearest even integer value. So the value 2.5 is also rounded to 2 when it is assigned
to Z. A value of 3.5 would be rounded to 4, a value of -3.5 would be rounded to -4,
and so on. A value of .5 or -.5 is rounded to 0.

Dim X As Integer
Dim Y As Integer
Dim Z As Integer
X% = 1.6
Print X%
' Output: 2
Y% = 1.5
Print Y%
' Output: 2
Z% = 2.5
Print Z%
' Output: 2

3-50 LotusScript Programmer’s Guide

The next example illustrates the way in which LotusScript handles data type
conversion in Variant variables to accommodate numeric values. The general rule is
that when a numeric value in a Variant variable exceeds the limit imposed by its data
type, it is assigned the next data type in the following order: Integer, Long, Single,
Double, Currency.

Dim sumV As Variant
Dim sInt As Integer
sInt% = 42
sumV = sInt%
Print TypeName(sumV)
' Output: INTEGER

' Assign the largest integer value to sInt%.
sInt% = 32767
sumV = sInt% + 1
' LotusScript converts sumV to a Long to prevent
' an overflow.
Print TypeName(SumV)
' Output: LONG

Finally, here’s an example of how LotusScript does number-to-string and
string-to-number conversion when a Variant variable is an operand in an operation
involving the + operator, which can be used for both addition and string
concatenation. Addition is performed when one of the following is true:

Both operands contain numeric values.

One operand is numeric, and the other is a Variant containing a string that can be
interpreted as a number.

Both operands are Variants, with a numeric value in one and a string value that
can be interpreted as a number in the other.

Concatenation is performed when one of the following is true:

Both operands are strings.

One operand is a string that can’t be interpreted as a number, and the other is a
Variant containing a numeric value.

Dim aVariantV As Variant
aVariantV = 1040
Print TypeName(aVariantV)
' Output: INTEGER

Chapter 3: Data Types, Constants, and Variables 3-51

Print aVariantV + "A"
' Output: 1040A
' because "A" is a string and 1040 can be interpreted as a string.
aVariantV = "43"
Print TypeName(aVariantV)
' Output: STRING
Print aVariantV + 5
' Output: 48
' because 48 is a number and 1040 can be interpreted as a number.

3-52 LotusScript Programmer’s Guide

Chapter 4
Procedures: Functions, Subs, and Properties

Procedures (sometimes called subprograms) are discrete blocks of reusable code that
eliminate redundancy in an application, making it easier to read, debug, and maintain.
In a LotusScript application, a procedure can be:

A LotusScript built-in function (such as, Abs or UCase)

An @function in a Lotus product (for example, @Sum in Lotus 1-2-3®)

A macro or agent in a Lotus product

A C function in a Dynamic Link Library (DLL)

A user-defined LotusScript function

A user-defined LotusScript sub

A user-defined LotusScript property

This chapter explains how you create and use functions, subs, and properties. You can
create functions, subs, and properties in two areas of an application: at module level
and as part of the definition of a user-defined class. This chapter focuses on functions,
subs, and properties that you define at module level, while Chapter 5, “User-Defined
Data Types and Classes,” describes functions, subs, and properties that you define as
components of a user-defined class. The same basic rules apply in defining and
referring to functions, subs, and properties at module level and within a user-defined
class. These are described in this chapter, which covers the following topics:

How to declare, define, and execute a function

How to declare, define, and execute a sub

How to declare, define, and refer to a property

Functions
A function is a named procedure that returns a single value. LotusScript provides a
set of built-in functions that you can use to perform a variety of common numeric,
date/time, string, data-conversion, and value-testing operations, some of which are
described in the preceding chapter and all of which are fully described in the
LotusScript Language Reference and in online Help.

4-1

LotusScript also lets you create your own functions. You define a function by
specifying a series of one or more statements that are to be executed as a block when
the application calls the function. You enclose these statements between the function’s
signature and the End Function statement (which marks the end of the function’s
definition).

A function’s signature specifies the function’s name, its scope, the data types of the
values that it expects the application to pass it (if any), the lifetime of the variables that
it defines (if any), and the data type of the value it returns to the application.

The statements that comprise the body of a function can include the following:

Variable declarations

Assignment statements (including statements that assign values to the function
itself)

Calls to built-in functions

Calls to user-defined procedures (including calls to the function itself)

Looping and branching statements (including Exit Function and End, which cause
execution of the function to terminate before reaching the block terminator)

Statements for performing standard file operations and for communicating with
the end user

Certain other statements and directives are not allowed within the body of a function,
most notably, those that declare or define a function, sub, property, or user-defined
data type or class, and the Option, Use, and UseLSX statements.

The rest of this section explains how to do the following:

Declare a function

Define a function

Execute a function

Declaring and defining functions
When you declare a function, you make the information contained in the function’s
signature known to the application. When you define a function, you provide this
information as well as the set of statements that are to be executed when the
application calls the function.

4-2 LotusScript Programmer’s Guide

Declaring a function allows you to refer to that function before you actually define it.
Referring to an undeclared function before you define it can produce errors, as in the
following example:

' Error-producing sequence
Function FirstFunction(yourName As String) As String
 ' This function calls SecondFunction.
 FirstFunction$ = SecondFunction$(yourName$)
End Function

Function SecondFunction(aString As String) As String
 SecondFunction$ = "Hi, " & aString$ & "."
End Function

Print FirstFunction$(InputBox$("What's your name?"))
' Suppose the user types Carol.
' Output: run-time error.

The reason that the Print statement produces an error here is that the LotusScript
compiler makes a single pass over the code, interpreting the reference to the
previously undeclared and undefined function SecondFunction$ in FirstFunction$ as a
reference to an implicitly declared variable within the function definition. This
reference produces a run-time error because LotusScript interprets SecondFunction$
as an undeclared array with an inappropriate subscript (in this case, the empty string).

There are two easy ways to avoid errors caused by referring to previously undefined
functions:

Define your functions, subs, and properties in the reverse order in which the
application calls them. For example:

' Good sequence.
Function SecondFunction(aString As String) As String
 SecondFunction$ = "Hi, " & aString$ & "."
End Function
Function FirstFunction(yourName As String) As String
 FirstFunction$ = SecondFunction$(yourName$)
End Function

Print FirstFunction$(InputBox$("What's your name?"))
' Suppose the user types Carol.
' Output: Hi, Carol

Chapter 4: Procedures: Functions, Subs, and Properties 4-3

Explicitly declare your functions, subs, and properties before you define them.
You do this with Declare statements. This strategy is generally the easier and less
error-prone. For example:

' Good sequence including Declare.
Declare Function FirstFunction(yourName As String) As String
Declare Function SecondFunction(aString As String) As String

Function FirstFunction(yourName As String) As String
 FirstFunction$ = SecondFunction$(yourName$)
End Function

Function SecondFunction(aString As String) As String
 SecondFunction$ = "Hi, " & aString$ & "."
End Function

Print FirstFunction$(InputBox$("What's your name?"))
' Suppose the user types Carol.
' Output: Hi, Carol

Declaring a function
You use the Declare statement to explicitly declare a function as a member of a
user-defined class or at module level in a product that does not support the IDE. The
IDE automatically generates a Declare statement for each function that you define at
module level. You should therefore not include any Declare statements at module
level if you are using the IDE. All Lotus products, regardless of the LotusScript
application development environment, allow you to use Declare statements in the
definition of a user-defined class. Declare statements should appear at the beginning
of the class definition.

The syntax of the Declare statement is:

Declare [Public | Private] [Static] Function functionName

[(parameterList)] [As dataType]

4-4 LotusScript Programmer’s Guide

The following table summarizes the elements of the Declare statement:

Element Description

Public, Private When you declare a function at module level, Public indicates that the
application can refer to the function outside the module in which the function
is defined, as long as that module is loaded. Private indicates that the function
is available only within the module in which it is defined. When you declare a
function inside the definition of a user-defined class, Public means that the
function is available outside the class definition. Private means that the
function is only available within the class definition. By default, functions
defined at module level are Private, and functions defined within a class are
Public.

Static Declares variables defined within the function to be static by default. Static
variables retain their values (rather than going out of existence) between calls
to the function while the module in which it is defined remains loaded.

functionName The name of the function, which can end in one or another of the LotusScript
data type suffix characters (%, &, !, #, @, and $), which determine the data
type of the function’s return value. You can append a data type suffix
character to a function name when you declare it only if you do not include
the As dataType clause in the declaration.

parameterList A comma-delimited list of the function’s formal parameters (if any), enclosed
in parentheses. (The list can be empty.) This list declares the variables for
which the function expects to be passed values when it is called. Each member
of the list has the following form:

[ByVal] paramName [() | List] [As dataType]

ByVal means that paramName is passed by value: that is, the value assigned to
paramName is a local copy of a value in memory rather than a pointer to that
value. paramName() is an array variable; List identifies paramName as a list
variable; otherwise, paramName can be a variable of any of the other data types
that LotusScript supports. You can’t pass an array, a list, an object reference,
or a user-defined data type structure by value. As dataType specifies the
variable’s data type. You can omit this clause and use a data type suffix
character to declare the variable as one of the scalar data types. If you omit
this clause and paramName doesn’t end in a data type suffix character (and
isn’t covered by an existing Deftype statement), its data type is Variant.

As dataType Specifies the data type of the function’s return value. A function can return a
scalar value, a Variant, or an object reference. If you include this clause,
functionName cannot end in a data type suffix character. If you omit this clause
and functionName doesn’t end in a data type suffix character (and isn’t covered
by an existing Deftype statement), the function’s return value is Variant.

Chapter 4: Procedures: Functions, Subs, and Properties 4-5

Defining a function
You can define a function at module level or within the definition of a user-defined
class. The syntax of the statement that defines a function is as follows:

[Public | Private] [Static] Function functionName [(parameters)] [As dataType]

statements

End Function

The table in the preceding section provides a synopsis of the elements of the Function
statement.

Note that if you declare a function before defining it, the definition has to be
essentially the same as the declaration. For example, the following declaration and
definition are acceptable because Private is the default scope for a function defined at
module level, and Cubit# is equivalent to Cubit As Double. Substituting Public for
Private, adding Static, altering the contents of the argument list or changing any data
types would produce an error:

Declare Private Function Cubit(intArg As Integer) As Double

Function Cubit#(intArg%)
 ' Calculate the cube of intArg% and
 ' make it the return value of Cubit#.
 Cubit# = intArg% ^ 3
End Function

Note You can include the appropriate data type suffix character in referring to a
function whose return value is one of the scalar data types if you like, but you need
not do so.

Values that a function can manipulate
Functions can manipulate values of the following sorts:

Values contained in module-level variables that the function can access directly

Values contained in member variables of a class that a function can access directly
if it has been defined as a member of that class

Values that the application passes to the function at run time either directly or by
reference as arguments (sometimes called actual parameters) in the statement that
calls the function

Values contained in variables (known as local variables) that the function defines
for its own use

Values returned by another function that the function calls

4-6 LotusScript Programmer’s Guide

The following sections describe the way a function handles module-level variables, the
values that the application passes it as arguments when calling the function, and
variables that a function defines for its own use. For information on functions defined
as class members and how they handle member variables, see Chapter 5,
“User-Defined Data Types and Classes.”

Module-level variables
As long as a function doesn’t define a local variable with the same name (see “Local
Variables” below), it can access a variable defined at module level, as in the following
example:

Dim anInt As Integer
Function ThreeTimes1 As Double
 ' Multiply the module-level variable anInt% by 3
 ' and assign the result as the function's return value.
 ThreeTimes1# = anInt% * 3
End Function
anInt% = 5
Print ThreeTimes1#
' Output: 15

Using procedures to directly manipulate module-level variables is not recommended.
The practice goes against the grain of modular programming style and makes it easy
to introduce errors into your application, especially if you don’t always declare your
variables explicitly.

Parameters
When you define a function, you can declare a list of variables (sometimes called
formal parameters or, simply, parameters) as part of its signature. These variables are
placeholders for values that the application passes the function at run time and that
the function then uses when it executes. The run-time values that the application
passes the function are known as actual parameters or arguments.

There are two ways in which the application can pass arguments to a function: by
value and by reference (the default). Some types of argument—for example, an
array—can only be passed by reference. When you pass an argument by value, you
pass a copy of the value in memory. When you pass an argument by reference, you
pass a pointer to the value in memory. This means that when a function changes the
value of an argument that the caller passes it by value, the effect of the change is local
to that function: the copy but not the original value in memory changes. However,
when a function changes the value of an argument that the caller passes it by
reference, the original value changes.

Chapter 4: Procedures: Functions, Subs, and Properties 4-7

For example:

Dim A As Integer
Dim B As Integer
Function PlusFive(X As Integer, Y As Integer) As Integer
 ' Increment each of the two values received by 5
 ' and make their sum the function's return value.
 X% = X% + 5
 Y% = Y% + 5
 PlusFive% = X% + Y%
End Function
A% = 10
B% = 15
Print PlusFive%((A%), (B%))' Pass A% and B% by value.
' Output: 35
Print A% B%
' Output: 10 15 ' A% and B% are unchanged.
Print PlusFive(A%, B%) ' Pass A% and B% by reference.
' Output: 35
Print A% B% ' A% and B% are changed.
' Output: 15 20

Local variables
A procedure can define variables for its own use. By default, a local variable exists
only as long as the procedure in which it is defined is executing. Then it ceases to refer
to a location in memory, and its value is forgotten. If you include the Static keyword in
the declaration of a local variable, that variable retains its address in memory, and its
value persists between calls to the procedure. In either case, local variables are not
visible outside of the procedure in which you define them though you can pass them
as arguments to other procedures that the procedure calls.

You can define a local variable with the same name as a module-level variable. This is
known as shadowing. When you do this, the procedure uses the local variable and
ignores the module-level variable of the same name. For example, defining counter%
as a local variable makes the BadCount example cited under "Module-level variables"
earlier in this section work the way it should. The calling While loop executes three
times, because BadCount no longer has any effect on the counter variable in the calling
loop:

Dim counter As Integer ' Module-level variable
Function BadCount As Integer
 Dim counter As Integer ' Local variable
 counter% = 1
 While counter% < 4
 ' Do something.
 counter% = counter% +1
 Wend
 BadCount% = counter%
End Function

4-8 LotusScript Programmer’s Guide

counter% = 1
While counter% < 4
 Print "BadCount% = " & BadCount%
 counter% = counter% +1
Wend

The following example illustrates the use of static and nonstatic local variables and
shows how to pass a local variable as an argument in a call to another procedure. The
example consists of two functions, GetID and FindMatch. GetId prompts the user for a
password (his or her first name) and then calls FindMatch, passing it the password.
FindMatch determines if the name is in the module-level array theNames. If it is,
FindMatch returns a value of True (-1) and GetId displays a confirmation message. If
the name is not in the array, FindMatch increments the static variable callCounter% by
1 and returns a value of False (0), at which point GetId displays a message box asking
the user to try again or quit. If the user chooses to quit, GetId displays an appropriate
message. If the user tries again, GetId again calls FindMatch to check the name. If the
user enters three invalid names in a row (in three successive calls to FindMatch),
FindMatch terminates the program.

%Include "LSCONST.LSS"
 ' Declare an array of Strings and initialize it with some names.
 Dim theNames(1 to 6) As String
 theNames(1) = "Alex"
 theNames(2) = "Leah"
 theNames(3) = "Monica"
 theNames(4) = "Martin"
 theNames(5) = "Elizabeth"
 theNames(6) = "Don"

Function FindMatch(yourName As String) As Integer
 Static callCounter As Integer ' To count the number of
 ' calls to FindMatch.
 Dim counter As Integer ' Loop counter.
 FindMatch% = FALSE

 For counter% = 1 to 6
 If yourName$ = theNames(counter%) Then
 FindMatch% = TRUE
 Exit For ' Exit from the For loop now.
 End If
 Next

 ' If the user enters an invalid name,
 ' increment callCounter%.
 If FindMatch% = False Then callCounter% = callCounter% + 1

Chapter 4: Procedures: Functions, Subs, and Properties 4-9

 ' After three consecutive invalid names, terminate the script.
 If callCounter% = 3 Then
 Print "Go away, friend."
 End ' Terminate execution.
 End If
End Function

Function GetId As String
 Dim match As Integer
 Dim goAgain As Integer
 Dim pswd As String
 Dim msg As String
 Dim msgSet As Integer
 Dim ans As Integer
 match% = FALSE
 goAgain% = TRUE
 msg$ = "That's not a valid name. Would you like to try again?"
 msgSet% = MB_YESNO + MB_ICONQUESTION

 ' Go through this While loop at least once.
 While match% = FALSE and goAgain% = TRUE
 pswd$ = InputBox$("Please enter your name.")
 ' Call FindMatch, passing it the name the user
 ' just entered (pswd$).
 match% = FindMatch%(pswd$)
 ' If the name the user entered isn't in theNames,
 ' see if the user would like to try again or quit.
 If match% = False Then
 ans% = MessageBox(msg$, msgSet%)
 ' If No, end the While loop.
 If ans% = IDNO Then
 goAgain% = FALSE
 GetID$ = "Have a nice day, " & pswd$ & "."
 End If
 Else
 GetID$ = "Your ID is valid, " & pswd$ & "."
 End If
 Wend
End Function

4-10 LotusScript Programmer’s Guide

Print GetID$
' Output: (1) The user enters the name "Martin" at the prompt:
' Your ID is valid, Martin.
' Output: (2) The user enters the name "Fred" at the prompt
' and then selects No in the message box:
' Have a nice day, Fred.
' Output: (3) The user enters the name "Fred" at the prompt,
' then selects Yes, then enters "Frank," then selects
' Yes, then enters "Joe":
' Go away, friend.

Assigning a function a return value
Typically, one of the statements that you include in the definition of a function assigns
the function a return value, that is, a value that it returns to the caller. This statement
takes the form FunctionName = returnValue, where returnValue has the data type
specified in the As dataType clause of the function’s signature: a scalar, a Variant, or an
object reference. For example,

Function Cubit(intArg%) As Double
 ' Return the cube of intArg%.
 Cubit# = intArg% ^ 3
End Function

or

Function Left5(aString As String) As String
 ' Return the leftmost 5 characters of aString$.
 Left5$ = Left$(aString$, 5)
End Function

You can cause a function to return an array or a list. To do so, you need to make the
function’s return value a Variant, which can hold an array or list, as in the following
example, which passes an array of names in one format (first name, space, last name)
to a function that returns another array in which the names appear in a different
format (last name, comma, space, first name):

Dim myVariantVarV As Variant
Dim anArray(1 to 3) As String
Dim X As Integer
anArray$(1) = "Alex Smith"
anArray$(2) = "Elizabeth Jones"
anArray$(3) = "Martin Minsky"

Chapter 4: Procedures: Functions, Subs, and Properties 4-11

Function SwitchNames(arrayOfNames() As String) As Variant
 ' Declare a local array variable to pass back to the
 ' application as the return value of SwitchNames. Performing
 ' the operation on arrayOfNames, which is passed by
 ' reference, would change anArray if arrayOfNames were
 ' the return value of the function.
 Dim newArrayOfNames(1 to 3) As String
 Dim tempArray(1 to 3, 1 to 3) as String
 Dim aSpace As Integer
 For X% = 1 to 3
 ' Locate the space that separates first name from last name
 ' in arrayOfNames, then extract everything before the
 ' space to tempArray, then extract everything after the
 ' space to the corresponding location in tempArray's
 ' second dimension.
 aSpace% = Instr(arrayOfNames$(X%), " ")
 tempArray$(1, X%) = Mid$(arrayOfNames$(X%), 1, aSpace% - 1)
 tempArray$(2, X%) = Mid$(arrayOfNames$(X%), aSpace% + 1, _
 Len(arrayOfNames$(X%)))
 Next
 For X% = 1 to 3
 newArrayOfNames(X%) = tempArray(2, X%) & ", " & tempArray(1, X%)
 Next
 SwitchNames = newArrayOfNames
End Function

MyVariantVarV = SwitchNames(anArray())
For X% = 1 to 3
 print myVariantVarV(x%)
Next
' Output: Smith, Alex
' Jones, Elizabeth
' Minsky, Martin
For x% = 1 to 3
 Print anArray(x%)
Next
' Output: Alex Smith
' Elizabeth Jones
' Martin Minsky

A function need not contain a statement that assigns it a return value. If you don’t
include such a statement when you define the function, LotusScript assigns the
function the default return value appropriate to the data type specified or implied in

4-12 LotusScript Programmer’s Guide

the function’s signature. The default values are 0 for a numeric data type, the empty
string ("") for a String, EMPTY for a Variant, and NOTHING for an object reference.
For example:

Dim anInt As Integer
Dim anotherInt As Integer
Function PrintCube(intArg%) As Integer
 Print intArg% ^ 3
End Function
anInt% = CInt(InputBox$("Enter a number:"))
' Suppose the user enters 3.
anotherInt% = PrintCube%(anInt%)
' Output: 27
Print anotherInt%
' 0

Executing a user-defined function
There are various ways to execute a user-defined function. The possibilities differ
according to the number of arguments that the function expects to be passed when
you call it and whether the function appears as part of a statement (such as an
assignment statement or a Print statement) or just by itself.

Executing a function that takes no arguments
When you call a parameterless function by including it in a statement, the function’s
name can end in empty parentheses or no parentheses, as you prefer. For example:

Dim anInt As Integer
Dim aDouble As Double
Function Cubit1 As Double
 ' Return the cube of anInt% and display a message
 ' saying what that value is.
 Cubit1# = anInt% ^ 3
 Print anInt% & " cubed = " & Cubit1# & "."
End Function
anInt% = 4
aDouble# = Cubit1#
' Output: 4 cubed is 64.
aDouble# = Cubit1#
' Output: 4 cubed is 64.
Print aDouble#
' Output: 64
Print Cubit1#
' Output: 4 cubed is 64.
 64
Print Cubit1#
' Output: 4 cubed is 64.
 64

Chapter 4: Procedures: Functions, Subs, and Properties 4-13

You can call a parameterless function by simply entering the function’s name, which
must not include empty parentheses. For example:

Cubit1#
' Output: 4 cubed is 64

Executing a function that takes a single argument
When you call a function that expects a single argument, you must enclose that
argument in parentheses when you include the function in a statement. For example:

Dim anInt As Integer
Dim aDouble As Double
Function Cubit2(X As Integer) As Double
 ' Return the cube of X% and display a message
 ' saying what that value is.
 Cubit2# = X% ^ 3
 Print X% & " cubed = " & Cubit2# & "."
End Function
anInt% = 4
aDouble# = Cubit2#(anInt%)
' Output: 4 cubed is 64.
Print aDouble#
' Output: 64
Print Cubit2#(anInt%)
' Output: 4 cubed is 64.
 64

You can call a one-parameter function in any of the following additional ways:

With a Call statement. You must enclose the argument in parentheses.

By entering the name of the function followed by the argument that it expects with
no parentheses.

By entering the name of the function followed by the argument it expects enclosed
in parentheses. This notation signifies that you are passing the argument by value
rather than by reference.

For example:

Call Cubit2#(anInt%)
' Output: 4 cubed is 64.
Cubit2# anInt%
' Output: 4 cubed is 64. (anInt% is passed by reference.)
Cubit2#(anInt%)
' Output: 4 cubed is 64. (anInt% is passed by value.)

4-14 LotusScript Programmer’s Guide

Executing a function that takes multiple arguments
When you call a function that expects multiple arguments, you must enclose those
arguments in parentheses when you include the function in a statement. For example:

Dim anotherInt As Integer
Function Cubit3(X As Integer, Y As Integer) As Double
 ' Return the product of X% and Y%.
 Cubit3# = X% * Y%
 Print X% & " times " Y% & " = " & Cubit3# & "."
End Function
anInt% = 4
anotherInt% = 6
Print Cubit3#(anInt%, anotherInt%)
' Output: 4 times 6 = 24.
 24

You can also call a function that expects multiple arguments with a Call statement or
by entering the function’s name followed by the arguments. The Call statement
requires parentheses; the function name by itself does not allow parentheses. For
example:

Call Cubit3#(anInt%, anotherInt%)
' Output: 4 times 6 = 24.
Cubit3# anInt%, anotherInt%
' Output: 4 times 6 = 24.

Executing a function recursively
A function can call itself. A function that calls itself is known as a recursive function.
The following is a recursive function:

Function Facto# (theNum%)
 ' Calculate theNum% factorial and make it
 ' the return value of Facto#.
 If theNum% <= 0 Then
 Facto# = 0
 ElseIf theNum% = 1 Then
 Facto# = 1
 Else
 Facto# = theNum% * Facto#(theNum% -1)
 End If
End Function

All recursive functions can be rewritten as nonrecursive functions. Why write a
recursive function instead of a nonrecursive one when the operation you want to
perform lends itself to either treatment? The trade-off is elegance of code for
inelegance of memory management: recursive functions tend to be more compact than
their nonrecursive counterparts but they also tend to use a lot of memory.

Chapter 4: Procedures: Functions, Subs, and Properties 4-15

Subs
A sub is a named procedure that performs one or more operations without returning a
value to its caller. Except for not returning a value, a sub is not much different from a
user-defined function: you define a sub by specifying a series of one or more
statements that are to be executed as a block. You enclose these statements between
the sub’s signature and the End Sub statement, which marks the end of the sub’s
definition.

A sub’s signature specifies the sub’s name, its scope, the sorts of values that it expects
the application to pass it (if any), and the lifetime of the variables that it defines (if
any).

The statements that comprise the body of a sub can be any of the same kinds that
comprise the body of a user-defined function, with one exception: you can’t include a
statement that assigns the sub a value. Statements that can’t appear in the body of a
function similarly can’t appear in the body of a sub.

Essentially the same conventions and restrictions that apply in declaring and defining
functions apply in declaring and defining subs: you can define a sub at module level
or as a member of a user-defined class. Declaring a sub before you define it allows you
to refer to that sub before you actually define it. The circumstances under which you
should or should not use the Declare statement to declare a sub before referring to it
are the same as those that apply in the case of user-defined functions (see “Declaring a
function” earlier in this chapter).

The ways in which you can execute a user-defined sub are a subset of the ways in
which you can execute a user-defined function. These are described in “Executing a
sub” later in this chapter.

LotusScript recognizes four specialized kinds of sub that you can define—Sub
Initialize, Sub Terminate, Sub New, and Sub Delete. These are subject to somewhat
different rules than the ones for declaring, defining, and executing other user-defined
subs. These are described separately in “Specialized subs” later in this chapter.

Declaring and defining subs
The syntax for declaring a sub is:

Declare [Public | Private] [Static] Sub subName [(parameters)]

The syntax for defining a sub is

[Public | Private] [Static] Sub subName [(parameters)]

statements

End Sub

4-16 LotusScript Programmer’s Guide

The elements of these syntax diagrams are summarized in the following table:

Element Description

Public, Private When you declare a sub at module level, Public indicates that the application
can refer to the sub outside the module in which it is defined, as long as that
module is loaded. Private indicates that the sub is available only within the
module in which it is defined. When you declare a sub inside the definition of
a user-defined class, Public means that the sub is available outside the class
definition. Private means that the sub is only available within the class
definition. By default, subs defined at module level are Private, and subs
defined within a class are Public.

Static Declares variables defined within the sub to be static by default. Static
variables retain their values (rather than going out of existence) between calls
to the sub while the module in which it is defined remains loaded.

subName The name of the sub.

parameterList A comma-delimited list of the sub’s formal parameters (if any), enclosed in
parentheses. (The list can be empty.) This list declares the variables for which
the sub expects to be passed values when it is called. Each member of the list
has the following form:

[ByVal] paramName [() | List] [As dataType]

ByVal means that paramName is passed by value: that is, the value assigned to
paramName is a local copy of a value in memory rather than a pointer to that
value. paramName() is an array variable; List identifies paramName as a list
variable; otherwise, paramName can be a variable of any of the other data types
that LotusScript supports. You can’t pass an array, a list, an object reference,
or a user-defined data type structure by value. As dataType specifies the
variable’s data type. You can omit this clause and use a data type suffix
character to declare the variable as one of the scalar data types. If you omit
this clause and paramName doesn’t end in a data type suffix character (and
isn’t covered by an existing Deftype statement), its data type is Variant.

As with user-defined functions, the declaration and definition of a sub have to agree in
their specifications (whether explicit or implicit) for the sub’s scope, its name, and its
parameter list.

Executing a sub
You can execute a user-defined sub in either of two ways: by including it in a Call
statement or by simply entering its name followed by the arguments that it expects to
be passed (if any). Calling conventions differ according to the number of arguments
the sub expects to be passed and whether you use the Call statement to do the calling.

Chapter 4: Procedures: Functions, Subs, and Properties 4-17

Executing a sub that takes no arguments
When you call a parameterless sub by including it in a Call statement, the sub’s name
can end in empty parentheses or no parentheses, as you prefer. For example:

Dim aName As String
Sub PrintName1
 ' Make the contents of firstName$ be all uppercase
 ' and display the result.
 firstName$ = UCase$(firstName$)
 Print firstName$
End Sub
firstName$ = "David"
Call PrintName1()
' Output: DAVID
Call PrintName1
' Output: DAVID

You can call a parameterless sub by simply entering the sub’s name, which must not
include empty parentheses. For example:

PrintName1
' Output: DAVID

Executing a sub that takes a single argument
When you call a sub that expects a single argument, you must enclose that argument
in parentheses when you include it in a Call statement. Enclose the argument in single
parentheses if you want to pass it by reference. To pass the argument by value, enclose
it in double parentheses. For example:

Sub PrintName2(someName As String)
 ' Make the contents of someName$ be all uppercase
 ' and display the result. If someName$'s contents are
 ' passed by reference, change the value of the corresponding
 ' variable in the caller's scope. Otherwise, don't.
 someName$ = UCase$(someName$)
 Print someName$
End Sub
firstName$ = "David"
Call PrintName2(firstName$) ' firstName$ is passed by reference
 ' by default.
' Output: DAVID
Print firstName$
' Output: DAVID
firstName$ = "David"
Call PrintName2((firstName$))
' Output: DAVID
Print firstName$
' Output: David

4-18 LotusScript Programmer’s Guide

You can call a sub that expects a single argument by simply entering the sub’s name
and the argument. If you enclose the argument in parentheses, it gets passed by value
to the sub. For example:

firstName$ = "David"
PrintName2(firstName$) ' firstName$ is passed by value.
' Output: DAVID
Print firstName$
' Output: David
PrintName2 firstName$ ' firstName$ is passed by reference.
' Output: DAVID
Print firstName$
' Output: David

Executing a sub that takes multiple arguments
When you call a sub that expects multiple arguments, you must enclose those
arguments in parentheses when you include the sub in a Call statement, and you must
not enclose them in parentheses when you call the sub by simply entering its name
followed by its arguments. For example:

Dim lastName As String
Sub PrintName3(pronom As String, cognom As String)
 pronom$ = UCase$(pronom$)
 cognom$ = UCase$(cognom$)
 Print pronom$ & " " & cognom$
End Sub
firstName$ = "David"
lastName$ = "LaFontaine"
Call PrintName3(firstName$, lastName$)
Output: ' DAVID LAFONTAINE
firstName$ = "Julie"
lastName$ = "LaFontaine"
PrintName3 firstname$, lastName$
' Output: JULIE LAFONTAINE

Specialized subs
LotusScript recognizes four specialized kinds of user-defined sub to allow the
automation of set-up and clean-up operations in an application:

Sub Initialize, which executes when the application loads the module in which
you defined it

Sub Terminate, which executes when the application unloads the module in
which you defined it

Sub New, which executes when you create an instance of the user-defined class in
which you defined it

Sub Delete, which executes when you delete an instance of the user-defined class
in which you defined it

Chapter 4: Procedures: Functions, Subs, and Properties 4-19

Sub Initialize
A Sub Initialize lets you perform set-up operations on loading a module. LotusScript
automatically executes a Sub Initialize when the application loads the module in which
you defined it, performing the operations specified in the sub. You can define only one
Sub Initialize per module. The syntax for Sub Initialize is:

Sub Initialize

statements

End Sub

By definition, a Sub Initialize is unalterably Private in scope. Its signature can’t include
a parameter list: LotusScript has no way of passing arguments to a Sub Initialize when
it calls it. A Sub Initialize is not subject to the usual restrictions concerning the sorts of
statements and directives that a user-defined procedure can contain.

Note Not all implementations of LotusScript support a user-defined Sub Initialize.

Sub Terminate
A Sub Terminate lets you perform clean-up operations when the application unloads a
module. As with Sub Initialize, LotusScript automatically executes a Sub Terminate
when the application unloads the module in which it is defined, performing the
operations specified in the sub. You can define only one Sub Terminate per module.
The syntax for Sub Terminate is:

Sub Terminate

statements

End Sub

Again, like Sub Initialize, a Sub Terminate is Private in scope, its signature can’t
include a parameter list, and it is not subject to the usual restrictions concerning the
sorts of statements and directives that a user-defined procedure can contain.

Sub New and Sub Delete
Sub New and Sub Delete are special features of user-defined classes. For more
information on these subs, see Chapter 5, “User-Defined Data Types and Classes.”

Properties
To facilitate the use of object-oriented programming techniques (such as those
supported by languages like C++), LotusScript supports a special kind of procedure,
the property. A property is a language element whose main purpose is to allow the
indirect manipulation of variables that you don’t want to expose to the application as a
whole. To the application, a property looks like a variable to which you can assign and
from which you can retrieve a value, but it is actually more than that.

4-20 LotusScript Programmer’s Guide

You create a property by defining two procedures, one of which (Property Set) assigns
the value of the property to a variable you want to manipulate, and the other of which
(Property Get) assigns the current value of that variable to the property. You execute
the Property Get procedure by assigning the property a value, and you execute the
Property Set procedure by including the property in a statement that uses its value.
The application operates on the property (which operates on the variable) rather than
on the variable itself. Because Property Set and Property Get are procedures, you can
make them perform operations in addition to assigning and retrieving values.

Declaring and defining properties
Essentially the same conventions and restrictions that apply in declaring and defining
functions and subs apply in declaring and defining a property: you can define a
property at module level or as a member of a user-defined class. Declaring a property
before you define it allows you to refer to that property before you actually define it.
The circumstances under which you should or should not use the Declare statement to
declare a property before referring to it are the same as those that apply in the case of
user-defined functions and subs.

The syntax for declaring a property is as follows:

Declare [Public | Private] [Static] Property Set propertyName [As dataType]

and

Declare [Public | Private] [Static] Property Get propertyName [As dataType]

The syntax for defining a property is as follows:

[Public | Private] [Static] Property Set propertyName [As dataType]

statements

End Property

and

[Public | Private] [Static] Property Get propertyName [As dataType]

statements

End Property

Chapter 4: Procedures: Functions, Subs, and Properties 4-21

Element Description

Public, Private When you declare a property at module level, Public indicates that the
application can refer to the property outside the module in which it is defined,
as long as that module is loaded; and Private indicates that the property is
available only within the module in which it is defined. When you declare a
property inside the definition of a user-defined class, Public means that the
property is available outside the class definition; and Private means that the
property is only available within the class definition. By default, properties
defined at module level are Private, and properties defined within a class are
Public.

Static Declares variables defined within the property to be static by default. Static
variables retain their values (rather than going out of existence) between calls
to the property while the module in which the property is defined remains
loaded.

propertyName The name of the property, which can end in one or another of the LotusScript
data type suffix characters (%, &, !, #, @, and $), which determine the data
type of the property’s return value. You can append a data type suffix
character to a property name when you declare it only if you do not include
the As dataType clause in the declaration.

As dataType Specifies the data type of the property’s return value. A property can return a
scalar value, a Variant, or an object reference. If you include this clause,
propertyName cannot end in a data type suffix character. If you omit this clause
and propertyName doesn’t end in a data type suffix character (and isn’t covered
by an existing Deftype statement), the property’s return value is Variant.

When you define a property, the signatures of the Property Set and Property Get
statements must agree as to scope, lifetime of variables, name, and data type.

Using properties
In the following example, the sub KeepGoing uses the property theCube# to
manipulate three variables (anInt%, aDouble#, and bigNum#) that are not otherwise
referred to directly by the application.

%Include "LSCONST.LSS"

Dim anInt As Integer
Dim aDouble As Double
Dim bigNum As Double

Property Set theCube As Double
 anInt% = theCube#
End Property

4-22 LotusScript Programmer’s Guide

Property Get theCube As Double
 aDouble# = anInt% ^ 3
 If aDouble# > bigNum# Then
 bigNum# = aDouble#
 End If
 theCube# = anInt%
End Property

Sub KeepGoing
 Dim goAgain As Integer
 Dim msg As String
 Dim msgSet As Integer
 Dim more As Integer
 goAgain% = TRUE
 msg$ = "Want to go again?"
 msgSet% = MB_YESNO + MB_ICONQUESTION
 ' Prompt the user to enter a number; assign that number to
 ' the property theCube# (by executing Property Set theCube#);
 ' calculate the cube of that number (by executing
 ' Property Get theCube#), assign it to the variable aDouble#,
 ' and compare it to the current value of bigNum#, resetting
 ' the latter if aDouble# is greater. Prompt the user to repeat
 ' the process or quit.
 While goAgain% = True
 ' Execute Property Set theCube# by assigning it
 ' a value. This assigns a value to anInt%.
 theCube# = CInt(InputBox$("Enter an integer:"))
 ' Execute Property Get theCube# by including theCube#
 ' in a Print statement. This assigns a value to aDouble#,
 ' may assign a value to bigNum#, and returns the current
 ' value of anInt%.
 Print theCube# & " cubed = " & aDouble# & "."
 Print bigNum# & " is the biggest cube so far."
 ' See if the user would like to do all this again or quit.
 more% = MessageBox(msg$, msgSet%)
 If more% = IDNO Then
 goAgain% = FALSE
 End If
 Wend
 Print "All Done."
End Sub

Chapter 4: Procedures: Functions, Subs, and Properties 4-23

Call KeepGoing

' Output: The user types 3 and selects Yes, then
 4 and selects Yes, then 2 and selects No.
' 3 cubed = 27.
' 27 is the biggest cube so far.
' 4 cubed = 64.
' 64 is the biggest cube so far.
' 2 cubed = 8.
' 64 is the biggest cube so far.
' All Done.

As the following example shows, you could just as well perform the same operations
as in the preceding example using a sub and a function instead of a property:

%Include "LSCONST.LSS"

Dim anInt As Integer
Dim aDouble As Double
Dim bigNum As Double

Sub SetTheCube
 anInt% = CInt(InputBox$("Enter an integer:"))
End Sub

Function GetTheCube(anInt As Integer) As Double
 aDouble# = anInt% ^ 3
 If aDouble# > bigNum# Then
 bigNum# = aDouble#
 End If
 GetTheCube# = anInt%
End Function

Sub KeepGoing
 Dim goAgain As Integer
 Dim msg As String
 Dim msgSet As Integer
 Dim more As Integer
 goAgain% = TRUE
 msg$ = "Want to go again?"
 msgSet% = MB_YESNO + MB_ICONQUESTION

4-24 LotusScript Programmer’s Guide

 While goAgain% = True
 Call SetTheCube
 Print GetTheCube#(anInt%) & " cubed = " & aDouble# & "."
 Print bigNum# & " is the biggest cube so far."
 ' See if the user would like to do all this again or quit.
 more% = MessageBox(msg$, msgSet%)
 If more% = IDNO Then
 goAgain% = FALSE
 End If
 Wend
 Print "All Done."
End Sub

Call KeepGoing

' Output: The user types 3 and selects Yes, then
' 4 and selects Yes, then 2 and selects No.
' 3 cubed = 27.
' 27 is the biggest cube so far.
' 4 cubed = 64.
' 64 is the biggest cube so far.
' 2 cubed = 8.
' 64 is the biggest cube so far.
' All Done.

What properties are really good for is manipulating protected variables, that is,
Private members of a user-defined class to which the application has no direct access.
See the following chapter, “User-Defined Data Types and Classes,” for a description of
user-defined classes and how to use properties to manipulate their member variables.

Chapter 4: Procedures: Functions, Subs, and Properties 4-25

Chapter 5
User-Defined Data Types and Classes

This chapter describes two kinds of custom data structure that you can define in
LotusScript. Each can hold data of different types in a single data structure. This
chapter covers the following topics:

Comparison of user-defined data types and classes

User-defined data types

Introduction to classes

Creating base classes

Creating, managing, and deleting objects

Creating derived classes

Creating arrays and lists of classes

Comparison of User-Defined Data Types and Classes
User-defined data types and classes are data structures that both hold data of different
types, but there are some subtle differences between the two. User-defined data types
are a common feature in BASIC programming and are used to support database, file
read/write, and print operations. Classes are common to object-oriented
programming and are used to represent objects whose data can be protected,
initialized, and accessed by a specific set of procedures.

User-defined data types and classes can both contain multiple variables of different
data types. Unlike user-defined data types, classes can also contain procedures
(properties and methods) that operate on those variables.

You can extend a class but not a user-defined data type. That is, you can derive new
classes (called derived classes) from an existing class (called a base class), where the
derived classes inherit from the existing (base) class. For example, you could extend an
Employee class by creating a FullEmployee class to represent full-time employees and
a Contractor class to represent temporary employees. Both the FullEmployee class and
the Contractor class share common data (ID, lastName, firstName, payCheck)
provided by the Employee class.

5-1

Another important difference between user-defined data types and classes is that a
variable of a user-defined data type holds actual data, while a class’s object reference
variable points to an object’s data stored in memory. For example, Person1 and
Person2 can be object reference variables that point to the same CheckingAccount
object. This flexibility allows two different people to access the same checking account.

In general, you create a user-defined data type for operations that don’t need
properties and methods. For example, you might create a data type named
Coordinates that contains member X and Y coordinates in order to perform simple file
read/write operations. In most other cases, you will want to create classes.

5-2 LotusScript Programmer’s Guide

User-Defined Data Types
You can save time and effort when you build applications by creating user-defined
data types. A user-defined data type lets you group data of different types in a single
variable. This data type can contain any kind of related information you want to store
and use together, such as personnel information, company financial information,
inventory, and customer and sales records. The following illustration shows how you
could create an Employee data type that contains three member variables (ID,
lastName, and firstName) to hold database records of employee information:

Defining user-defined data types
You define a user-defined data type using this syntax:

[Public | Private] Type typeName

member variable declarations

End Type

Element Description

Public, Private Public specifies that the data type is accessible outside the module in
which it is defined. Private (default) specifies that the data type is
accessible only within the module in which it is defined.

typeName The name of the data type.

member variable
declarations

Declarations for members of the type. Member variables can hold scalar
values, Variants, fixed arrays, or other user-defined data types. A member
variable declared as Variant can hold fixed or dynamic arrays, a list, or an
object reference, in addition to any scalar value. Declarations cannot
include Const statements.

While member variable declarations resemble those of local variables declared in a
function, LotusScript allocates space for them only when an application creates the
user-defined data type. When this happens, LotusScript allocates space for all the
member variables at the same time.

Chapter 5: User-Defined Data Types and Classes 5-3

Declaring a variable of a user-defined data type
After you define a user-defined data type, you can declare a variable of this type:

Dim President As Employee ' Create a single employee record.

If you want to hold data from many database records, you can declare an array of
variables of this type:

Dim Staff(10) As Employee ' Create an array of ten employee records.

Referring to member variables
You use dot notation (object.memberVariable) to refer to member variables, and you use
an assignment statement to assign values to member variables:

President.ID = 42
President.lastName = "Wilkinson"
President.firstName = "May"

You can refer to the elements of a member variable that is an array or list:

Staff(1).ID = 1134
Staff(1).lastName = "Robinson"
Staff(1).firstName = "Bill"

Staff(2).ID = 2297
Staff(2).lastName = "Perez"
Staff(2).firstName = "Anna"

You can retrieve data from member variables by assigning a member variable value to
a variable or printing the value of a member variable:

Dim X As String
X$ = Staff(2).lastName
Print X$ ' Prints Perez.

Conserving memory when declaring member variables
Members of a user-defined data type are not necessarily stored in consecutive bytes of
memory. Sometimes there is wasted space in the data type because, due to computer
hardware requirements, LotusScript stores variables of certain data types on
architecture-dependent boundaries. For example, LotusScript stores an Integer on a
2-byte boundary and a Double on an 8-byte boundary.

Because of these boundary requirements, you can waste space in a user-defined data
type when you define its members. For example, if the first member variable is an
Integer value (2 bytes) and the second member variable is a Long value (4 bytes), the
Integer is aligned on a 2-byte boundary and the Long is aligned on a 4-byte boundary,
which results in an undefined area of memory.

5-4 LotusScript Programmer’s Guide

You can use data space efficiently by declaring members with the highest boundary
first (Variant is biggest at 16 bytes), and those with the lowest boundary last
(fixed-length Strings). This is especially important because wasted space in the
definition of a user-defined data type becomes wasted space in every variable of that
user-defined data type.

Here is an example of a well-aligned type:

Type T1
 m1 As Variant ' 16 bytes
 m2 As Double ' 8 bytes
 m3 As Long ' 4 bytes
 m4 As String ' 4 bytes
 m5 As Integer ' 2 bytes
 m6(10) As Integer ' 2 bytes
 m7 As String * 30 ' 1 byte
End Type

LotusScript stores a variable of a user-defined data type on a boundary equal to the
size of its largest member. For example, the following script, continued from above,
shows how each variable of user-defined data type T1 is aligned on a 16-byte
boundary:

Type T2
 m1 As T1 ' 16-byte boundary; T1's largest member boundary is 16.
 m2(3) As Long ' 4 bytes.
End Type

Keep the following issues in mind when you declare member variables:

A fixed-length string is not aligned on any boundary.

A fixed array is aligned on the boundary of its declared data type.

The order for data types that align on the same boundary is not important. For
example:

Dim x As Long
Dim y As String

is as efficient as

Dim y As String
Dim x As Long

Chapter 5: User-Defined Data Types and Classes 5-5

Working with data stored in files
You often create user-defined data types to work with data stored in files. For
example, the script below and following illustration read a sample ASCII file that
contains employee parking information into an array of user-defined data types:

Type RecType
 empID As Double ' Employee ID
 theSection As Integer ' Car parking section
 theSpace As Integer ' Designated parking space
 theFloor As Integer ' Car parking level
 employee As String ' Employee name

End Type

' Dynamic array sizes to fit the lines in the file.
Dim arrayOfRecs() As RecType

Dim txt As String
Dim fileNum As Integer
Dim counter As Integer
Dim countRec As Integer
Dim found As Integer

fileNum% = FreeFile ' Get a file number to open a file.
counter% = 0
Open "c:\myfile.txt" For Input As fileNum%
Do While Not EOF(fileNum%)
 Line Input #fileNum%, txt$ ' Read each line of the file.
 counter% = counter% + 1 ' Increment the line count.
Loop
Seek fileNum%, 1 ' Pointer to beginning of file
' Since file has counter% number of lines, define arrayOfRecs to
' have that number of elements.
ReDim arrayOfRecs(1 To counter%)

5-6 LotusScript Programmer’s Guide

' Read the file contents into arrayOfRecs.
For countRec% = 1 to counter%
 Input #fileNum%, arrayOfRecs(countrec%).empID, _
 arrayOfRecs(countrec%).theSection, _
 arrayOfRecs(countrec%).theSpace, _
 arrayOfRecs(countrec%).theFloor, _
 arrayOfRecs(countRec%).employee
Next
Close fileNum%
' Elicit an employee's name and look for it in arrayOfRecs.
ans$ = InputBox$("What's your name?")
found% = False
For x% = 1 To counter%
 If arrayOfRecs(x%).employee = ans$ Then
 found% = True
 Print "Greetings, " & ans$ & "."
 Exit For
 End If
Next
If found% = False Then Print "No such employee.

Classes
You can build object-oriented applications by creating classes. A class is a data type
that restricts access to its data to a set of procedures. These procedures control the
ways that an instance of a class (an object) is initialized, accessed, and finally deleted
when it is no longer needed.

A class lets your application model real objects, their attributes, and their behaviors.
For example, an air traffic-control system creates a flight class, a car rental system
creates a car class, and a bank's automated teller system creates an account class. For
each class, you define its members: variables, properties, and subs and functions (also
called methods). Typically, you can retrieve and assign values to an object's
properties. Methods perform operations on the object.

Chapter 5: User-Defined Data Types and Classes 5-7

Class Properties Methods

Flight GateNumber
FlightNumber
InAir
OnGround

TakeOff
Land
DelayFlight
CancelFlight

Car LicensePlate
DriverLicense
RentalDate

ServiceCar
TransferLocation

Account CustomerNumber
Balance
AccountNumber

WithdrawCash
DepositMoney
MoveMoney

In a script, you can declare a variable to refer to an instance of the object’s class. The
variable is an object reference variable. Each class defines the data used by instances
of the class and defines a set of properties and methods that apply to the class.

Benefits of classes
Classes offer several features that can simplify your application programming:

Classes provide more functionality than any other LotusScript data type. A class
can hold any type of data, including instances of the class being defined.

Classes are self-contained so it’s easy to use the same class in another application.
For example, a File class that provides general file input/output functions can be
shared with other applications. Reusing classes reduces the time to design, write,
and test your application, increases the likelihood that your scripts are correct, and
saves time when you need to update scripts.

You can simplify the programming interface to your application by creating
classes that call the Windows® API (Application Programming Interface), or any
C-API. Users of the class work only with the class’s member variables, properties,
and methods, and do not require knowledge of Windows or C-API programming.

You can build class libraries (a collection of classes) to allow other application
developers to use your classes without allowing them to modify the class scripts.
To do this, you compile classes into .LSO files and provide access via the Use
statement.

You can use classes to build tools for your applications. For example, you can
create a class that allows your application to access the spelling checker and
dictionary that come with most Lotus products.

5-8 LotusScript Programmer’s Guide

Types of classes
You can create two types of LotusScript classes:

A base class defines common member variables, properties, and methods that can
be inherited by other classes.

A derived class extends and elaborates an existing base class. A derived class has
direct access to all members of the existing base class. However, the derived class
can add new member variables, properties, and methods, and it can redefine
properties and methods from the base class, while leaving the base class
unchanged. For example, you could create SavingsAccount and CheckingAccount
classes based on an Account class.

Base classes
You define a base class using this syntax:

[Public | Private] Class className

classBody

End Class

Element Description

Public, Private Public specifies that the class is accessible outside the module in which it is
defined. Private (default) specifies that the class is accessible only within the
module where the class is defined.

className The name of the class.

classBody Declares member variables, and declares and defines properties and
methods. Member variables can have any data type LotusScript supports,
and can be object reference variables of the class being defined. Methods can
be functions and subs, including Sub New, which initializes class objects,
and Sub Delete, which deletes class objects. You cannot declare a class
member as Static.

Declaring member variables
While class member variable declarations resemble those of local variables declared in
a function, LotusScript allocates space for them only when an application creates an
instance of a class. When this happens, LotusScript allocates space for all the class’s
member variables at the same time.

Chapter 5: User-Defined Data Types and Classes 5-9

You can define a class using any mixture of data types for member variables,
including object references to the class being defined:

Class MyClass
 myText As TextBox ' Sample product object reference
 i As Integer ' Integer
 myList List As String ' List of strings
 myRef As MyClass ' Reference to an object of this class
End Class

Defining member properties and methods
Properties and methods are tied to their class and can be used only with an object
belonging to that class. You define properties and methods inside the Class statement.

A property is a pair of functions that you can manipulate the way you would a
variable (see Chapter 4, “Procedures: Functions, Subs, and Properties”). You use
properties to manipulate protected variables, that is, Private members of a
user-defined class to which the application has no direct access.

A method is a sub or function that performs operations on objects.

5-10 LotusScript Programmer’s Guide

The following Stack class uses several properties and methods to perform simple push
and pop operations on a stack data structure.

Class Stack
 Private idx As Integer
 Stack List As Variant
 Public stackName As String
 Private Sub CheckStack ' Sub is visible only within the class.
 If idx% = 0 Then Error 999
 End Sub

 Sub New
 idx% = 0 ' Initialize idx.
 End Sub

 Private Property Set topValue As Variant
 CheckStack
 Stack(idx%) = topValue ' Set the top value on the stack.
 End Property

 Private Property Get topValue As Variant
 CheckStack
 topValue = Stack(idx%) ' Get the top value on the stack.
 End Property

 ' Same as Get for topValue.
 Function Top
 Top = topValue ' Call the topValue Get method.
 End Function

 Sub Push(v) ' Push a value on the stack.
 idx% = idx%+1
 topValue = v
 End Sub

 Function Pop ' Pop a value off the stack.
 Pop = topValue
 Erase Stack(idx%)
 idx% = idx%-1
 End Function

 ' Read-only property. There is no Set for Count.
 Property Get Count
 Count = idx% ' Count the values on the stack.
 End Property

End Class

Chapter 5: User-Defined Data Types and Classes 5-11

Dim St As New Stack
Call St.Push("An item on the stack")
Call St.Push("Another item on the stack")
Print "# of items on the stack is ";St.Count
Print "TopValue is ";St.Top

Declaring Sub New and Sub Delete (initializing and deleting objects)
Within a class definition you can define two special subs, Sub New and Sub Delete,
that let your application initialize and delete objects. Sub New is a sub that
LotusScript executes automatically when an object is created. Sub Delete is a sub that
LotusScript executes automatically when an object is deleted. You use Sub New to
initialize a newly created object. You use Sub Delete to perform termination
housekeeping on the object. LotusScript executes these subs automatically; you cannot
call them explicitly.

For example, you could create a File class that uses Sub New to open a file and Sub
Delete to close a file. Similarly, you could create a PrintJob class that uses Sub New to
start a new page, align text, and set the left and right margins, and that uses Sub
Delete to terminate the print job.

Keep the following issues in mind regarding Sub New and Sub Delete:

A class can have one Sub New and one Sub Delete.

Sub New executes automatically when LotusScript executes a Dim statement with
the New keyword, or executes a Set statement, referring to the class for which the
Sub New is defined. Sub Delete executes automatically when the object for which
it is defined is deleted.

Sub New and Sub Delete are always Public; you cannot declare them as Private.

You declare Sub New and Sub Delete as part of the definition of a class. You create a
Sub New by defining a sub named New and the parameters to initialize the newly
created object. You create a Sub Delete by defining a sub named Delete, without
specifying parameters.

Sub New in the following script initializes the member variables of the
CustomerAccount object. The Set statement that creates a new Account object also
passes three arguments required by the Sub New for the Account class. Sub New
assigns the values of the arguments to the three member variables of the newly created
object: balance@, acctNum&, and customerNum&.

5-12 LotusScript Programmer’s Guide

Class Account
 balance As Currency
 acctNum As Long
 customerNum As Long

' Declare Sub New.
 Sub New (newBal As Currency, newAcctNum As Long, newCustNum As Long)
 balance@ = newBal@
 acctNum& = newAcctNum&
 customerNum& = newCustNum&
 Print "New Parms=";balance@, acctNum&, customerNum&
 End Sub

' Declare Sub Delete.
 Sub Delete
 Print "Deleting account record for customer: ";customerNum
 End Sub

End Class
'.....
Dim CustomerAccount As Account

' Create the object.
Set customerAccount = New Account(1234.56, 10001991, 5412)

Delete customerAccount ' Explicitly delete the object.

About Public and Private class members
When you define a class, you can make members Public (so members can be referred
to by statements outside the class definition) or Private (so members can be referred to
only by properties and methods defined in that class). If you don’t specify otherwise,
member variables are Private by default; and properties, subs, and functions are
Public by default.

It is good programming practice to keep class member variables Private, and to use
Public properties and methods to manipulate the private data stored in member
variables. Keeping member variables Private is often called data hiding or
encapsulation because private data is hidden from subs and functions defined outside
the class. Keeping properties and methods Public provides public access to the class’s
users.

Referring to class members inside a class's scope
A class’s scope is everything within the Class...End Class statement. Within a class’s
scope, class members are immediately accessible to all of that class’s properties and
methods.

Chapter 5: User-Defined Data Types and Classes 5-13

You can refer to an individual member of a class by using its name. For example, to
print the value in a member variable called employeeName$, you use the following
statement:

Print employeeName$

Within a property or method, you can use the keyword Me to access the class's
definition. This is particularly useful in Sub New when you are assigning external
values to member variables. For example, you can use Me. memberVariable =

externalValue to assign a value. You can also use Me when you need to do the
following:

Refer to a class member that has the same name as a local variable. For example, if
a property or method contains a local variable X, and X is also the name of a class
member, use Me.X within the method to refer to the member X.

Pass a reference to the class as an argument to a procedure.

You must use Me to access class members that have the same names as LotusScript
keywords. For example, the following class definition uses Me to refer to a class
member that is a keyword.

Class MyObject
 ' ...
 ' Reserved keyword Read is used here to name a function.
 Function Read
 Dim x As Integer ' Status of operation.
 '
 ' Me is required to refer to the function named Read.
 Me.Read = x%
 End Function
 ' ...
End Class

Creating, Managing, and Deleting Objects
You use object reference variables to create, manage, and delete objects. An object
reference variable is different from other variables because it is associated with an
instance of a class (that is, an object). It has the data type of a class and, like other
variables, is a named area in storage. However, unlike other variables, the value
stored in the area named by an object reference variable is not the object itself. Instead,
the object (and the data it consists of) is stored elsewhere. The value stored in an object
reference variable is a 4-byte pointer to the object data, called an object reference.
LotusScript uses this pointer to access the object data. When you assign a value to an
object reference variable, you associate (or bind) the object reference to the object.

5-14 LotusScript Programmer’s Guide

Working with object reference variables
When you create an instance of a class, you must explicitly declare an object reference
variable. That is, you create the object, create the object reference variable, and assign
an object reference to the variable. The object reference points to the object. When an
object is created, its member variables are initialized, each to the initial value for the
data type of the member. For example, a member of data type Integer is initialized to
0. If a member is itself a user-defined data type or a class, it is initialized by initializing
its member variables.

You can create an object reference without creating an object with the following
syntax:

Dim x As ClassName

Because the variable you declare contains a reference to an object that does not yet
exist, the variable is initialized to the value NOTHING.

Creating objects
After defining a class, you create objects using the LotusScript New keyword. You can
use the New keyword with either the LotusScript Dim or Set statement. You can use
the keyword New in the declaration that declares an object reference variable. If you
use the New keyword when you declare the object reference variable, the declaration
creates an object and assigns to the variable a reference to the newly created object.

To create a new object and assign a reference to that object in a variable that you
are declaring, use the Dim statement with the following syntax:

Dim objRef As New className[(argList)]

To create a new object and assign a reference to it if you have already declared an
object reference variable (with a Dim statement without the New keyword), use
the Set statement with the following syntax:

Set objRef = New className[(argList)]

You can’t use the New keyword to declare an array of object reference variables or a
list of object reference variables.

Chapter 5: User-Defined Data Types and Classes 5-15

In the following example, X can hold only references to Demo objects, or else the value
NOTHING. It is initialized to NOTHING.

Class Demo
 ' ...
End Class

' Declare an object reference variable X of the class
' Demo, create an instance of that class, and assign X
' a reference to the new Demo object.
Dim X As New Demo

Dim DemoArray(10) As Demo ' Array of object reference variables
Dim DemoList List As Demo ' List of object reference variables

LotusScript initializes each element of DemoArray to NOTHING. However, since a
list has no elements when it is declared, LotusScript does not initialize the elements in
DemoList. Each element of DemoArray, and each element of DemoList, when created,
can hold either the value NOTHING or a reference to a Demo object, for example:

Set DemoArray(0) = New Demo

Using the Set statement
You can create an instance of a class by using a Set statement that includes the New
keyword and a variable that was previously declared as an object reference variable
for that class.

The Set statement is a kind of assignment statement used only to assign values (object
references) to object reference variables. You can’t use it to assign values to any other
kind of variable. At the same time, you cannot use the common assignment statement,
using the equal sign (=), with or without the Let keyword, to assign values to object
reference variables.

You can assign a reference to a newly created object to an array element or a list
element. Continuing from the previous example:

Dim Z(10) As Demo ' Declare an array of object reference variables.

Dim A List As Demo ' Declare a list of object reference variables.

Set Z(1) = New Demo ' Assign Z(1) a reference to the created object.

'Assign a list element a reference to the created object.
Set A("ITEM01") = New Demo

5-16 LotusScript Programmer’s Guide

You can assign an existing object reference to another variable using the Set statement
without the New keyword, as in the following example:

Class Customer
 ' ...
End Class
' Declare object reference variable C, create a Customer object,
' and assign C a reference to the new Customer object.
Dim C As New Customer

'Declare object reference variable myArray and initialize
'all elements of MyArray to NOTHING.
Dim myArray(10) As Customer

Dim dTwo As Customer ' Object reference is set to NOTHING.

Set dTwo = myArray(1) ' Assign the myArray(1) value, NOTHING, to DTwo.

Set myArray(1) = C ' myArray(1) and C refer to the same Customer.

Set dTwo = myArray(1) ' Now dTwo also refers to the same Customer.

Set myArray(1) = NOTHING ' Set the object reference to NOTHING.
' Assign myArray(1) a reference to a new Customer object.
Set myArray(1) = New Customer
' Assign dTwo a reference to a new customer object. Now, variables
' C, myArray(1), and dTwo each refer to different Customer objects.
Set dTwo = New Customer

Note that an assignment using Set does not copy an object. The assigned value is a
reference to an object, not the object itself. The value stored in an object reference
variable is a pointer to the data that makes up the object. Set copies the reference into
the target variable.

Using Variants to hold object references
You can assign an object reference to a variable of type Variant. In the following script,
the variable anyFruitV holds a reference to Fruit objects and is of type Variant. The
script executes when the user clicks a Notes button.

Class Fruit
 Sub PrintColor
 MessageBox ("I have no color.")
 End Sub
End Class

Chapter 5: User-Defined Data Types and Classes 5-17

Class Banana As Fruit
 Sub PrintColor
 MessageBox ("I'm yellow.")
 End Sub
End Class

Class Grape As Fruit
 Sub PrintColor
 MessageBox ("I'm purple.")
 End Sub
End Class

Sub Click(Source As Button) ' Sample Notes product object.
 Dim myFruit As New Fruit
 Dim myBanana As New Banana
 Dim myGrape As New Grape

 Dim anyFruitV As Variant

 Set anyFruitV = myFruit
 anyFruitV.PrintColor

 Set anyFruitV = myBanana
 anyFruitV.PrintColor

 Set anyFruitV = myGrape
 anyFruitV.PrintColor
End Sub

Initializing member variables
Sub New is automatically called when LotusScript executes a Dim or a Set statement
with the New keyword and creates an instance of that class. You can use a class’s Sub
New to initialize member variables, or you can choose to initialize variables using
Property Get and Property Set. You can specify parameters so that arguments can be
passed to Sub New.

Referring to class members outside of a class's scope
Outside a class’s scope, you can refer only to its Public members. By default, a class’s
member variables are Private and its properties, subs, and functions are Public. You
use dot notation to refer to Public class members.

5-18 LotusScript Programmer’s Guide

Referring to Public class members
Outside a class’s scope, you can access only its Public members. For example, you can
access the member variables balance@ and custName$ in the Customer class.

Class Customer
 Public custName As String
 Public balance As Currency

 Sub CheckOverdue
 If balance@ > 0 Then
 Print "Overdue balance" ' Send an overdue letter.
 End If
 End Sub
End Class

Dim X As New Customer
Dim newBal As Currency

' This is a legal statement, because custName is Public.
X.custName$ = "Acme Corporation"
X.balance@ = 14.92 ' Balance@ is Public.

' Assigns the value of the Public member variable balance
' to the variable newBal@.
newBal@ = X.balance@
Print X.balance@; newBal@ ' Prints 14.92 14.92

To check for an overdue balance, you can call the Public sub CheckOverdue as in the
following example:

Dim Y As Customer
Set Y = X
Y.CheckOverdue 'Prints "Overdue balance"
Print Y.balance@; X.balance@ ' Prints 14.92 14.92

Referring to members of an object
You can use the With statement as a quick way to access class members of a given
object. You can also use the With statement to test expressions using an object’s
members. The syntax of With is:

With objectRef

[statements]

End With

Chapter 5: User-Defined Data Types and Classes 5-19

Element Description

objectRef An expression whose value is a reference to an object. For example, objectRef
can be a function call that returns an object reference or a Variant that
contains an object reference.

statements One or more statements.
The With statement itself may be nested up to 16 levels.

The following example uses the With statement to refer to members of an object using
a dot to represent the object name (startEmp).

Class Employee
 Public empName As String
 Public newName As String

 ' Sub GetName prompts for and accepts input to newName.
 Sub GetName
 newName$ = InputBox$("Enter name:" , "New Name")
 End Sub
End Class

Dim startEmp As New Employee
' Sub SetEmp puts information into the new employee object.
Sub SetEmp (E As Employee)
 With E
 Call .GetName ' Prompts for input to startEmp.newName$.
 .empName$ = .newName$
 End With
End Sub
Call SetEmp(startEmp)

Outside the With statement, you need to specify the entire reference. For example:

Employee.empName$ = .newName$

Testing object references
You use the Is operator to compare object references and to test object reference
variables for the value NOTHING. When you use the Is operator to compare two
object references, the expression evaluates to True (-1) if they refer to the same object,
or if both have the value NOTHING. Otherwise it evaluates to False (0).

5-20 LotusScript Programmer’s Guide

The following example illustrates how to test object references:

Class MyClass
 ' ...
End Class

Dim x As MyClass
Dim y As MyClass
Dim z As New MyClass
Dim other As New MyClass

Set x = z
If (x Is z) Then Print "Both x and z refer to the same object."
If (y Is NOTHING) Then Print "y is NOTHING. It refers to no object."
If (z Is other) Then _
 Print "This should not print; z and other are different objects."
End If

You can also use the Is operator in a flow of control statement, for example in a Do
statement:

Dim a As New MyClass, b As MyClass
' ...
Do While b Is NOTHING ' The condition b is NOTHING.
 ' Condition is either True or False.
' ...
 Set b = a
Loop

Deleting objects
You define a Sub Delete to specify the procedure that LotusScript is to execute just
before it deletes an object of the specified class. You can use the Delete statement to
explicitly delete objects, or you can let LotusScript delete the object automatically
when it is no longer needed.

Sub Delete
A class’s Sub Delete is called when LotusScript deletes an object of that class. Sub
Delete itself does not actually delete the object — it performs termination
housekeeping before the system reclaims the object’s memory space so that it may be
used to hold new objects. Sub Delete receives no parameters and returns no value. For
more information, see “Declaring Sub New and Sub Delete (initializing and deleting
objects),” earlier in this chapter.

Deleting an object using the Delete statement
When you use the Delete statement, LotusScript deletes the object even if one or more
variables contain references to the object. All object reference variables that contain
references to the deleted object are automatically assigned the value NOTHING, and
you can no longer refer to the object's members.

Chapter 5: User-Defined Data Types and Classes 5-21

In the following example, the variables anObj and otherObj are set to NOTHING. You
can reuse these variables because they are still valid references; they simply contain
NOTHING.

Class DemoObject
 Sub New
 Print "New"
 End Sub

 Sub Delete
 Print "Delete"
 End Sub
End Class

Dim anObj As New DemoObject
Dim otherObj As DemoObject
Set otherObj = anObj ' Make Other refer to the same object.
Delete anObj ' Set all the object's references to NOTHING.

If ((anObj is NOTHING) And (otherObj is NOTHING)) Then _
 Print "Both anObj and otherObj are now NOTHING"

Managing memory for objects
LotusScript automatically manages the memory associated with objects you create by
tracking all references to the objects. LotusScript also automatically frees the memory
for objects by deleting them when no variables refer to the objects.

Here is how LotusScript tracks references to objects: When you create an object,
LotusScript assigns a reference to the object and sets the object’s reference count to 1.
Whenever you assign an object reference for that object to a variable, LotusScript
increments the reference count by 1. When an object reference is no longer needed,
such as when an object reference variable goes out of scope, LotusScript decrements
the object’s reference count by 1. When the reference count reaches 0, no variables
contain references to the object so LotusScript automatically deletes the object and
frees its memory.

5-22 LotusScript Programmer’s Guide

In the following example, LotusScript deletes objects when the reference count returns
to 0.

Class DemoObject

 Sub New
 Print "New"
 End Sub

 Sub Delete
 Print "Delete"
 End Sub

End Class

 Sub MyDemo
 ' localObject reference count is set to 1.
 Dim localObject As New demoObject
 If (Not (localObject Is NOTHING)) Then _
 Print "In MyDemo sub and localObject exists."
 End Sub

Print "About to call MyDemo."
Call MyDemo
' Sub MyDemo is now out of scope...
' so the reference count is 0 and the object is deleted.
Print "Returned from MyDemo. Delete already ran."

Derived Classes
Instead of always creating classes from scratch, you can derive a new class from a
previously defined class. Usually you do this when an existing class provides
members that the new class can use, or when you want to extend or embellish existing
class properties and methods. Deriving new classes from existing classes is called
inheritance. The new class is called the derived class because it inherits, and has direct
access to, all Public and Private members of the existing base class.

For example, suppose you want to create derived classes called CheckingAccount,
SavingsAccount, BrokerageAccount, and RetirementAccount based on an existing
Account class. Because the derived classes can access all existing properties and
methods for the Account class, such as AccountNumber, Balance, and DepositMoney,
you can reuse all Account class scripts in the new classes.

Chapter 5: User-Defined Data Types and Classes 5-23

You can define new member variables, properties, and methods in a derived class to
add operations that the derived classes can use. For example, you can add BuyStock
and SellStock methods to the BrokerageAccount class.

A property or method defined in a base class is accessible in the derived class. You can
also modify the behavior of the base class properties and methods used by the derived
class. This is called property overriding and method overriding. There can be many
reasons to override properties and methods. For example, the derived class may need
to extend a base class’s property to perform specialized data validation, or the derived
class may need to replace a method entirely (for example, to substitute a different
calculation for a currency exchange). You can override the Account class
WithdrawCash method (shown in the preceding illustration) so that the
RetirementAccount class can use it, for example, to handle special regulations for
withdrawals from retirement accounts.

A derived class can serve as the base class for another derived class. For example, the
following illustration shows how the Contractor class, which is derived from the
Employee class, serves as the base class for the Subcontractor class. The Subcontractor
class has access to the members of both the Contractor class and the Employee class.

5-24 LotusScript Programmer’s Guide

A derived class has the same scope as its base class, except that a derived class cannot
access the Sub Delete of its base class.

Defining derived classes
Use this syntax to define a new class based on an existing class:

[Public | Private] Class className As baseClass

classBody

End Class

Element Description

Public, Private Public makes the derived class accessible outside the module in which it is
defined. Private (default) makes the derived class accessible only within the
module in which it is defined.

className The name of the derived class.

baseClass The name of the base class from which this class is derived.

classBody Member variables can have any data type LotusScript supports and can be
object reference variables of the class being defined. You can also specify
properties, functions, and subs, including Sub New, which initializes class
objects, and Sub Delete, which deletes class objects. You cannot declare a class
member as Static.

Chapter 5: User-Defined Data Types and Classes 5-25

Here is a derived class called MyClass2 that uses the base class MyClass1:

Class MyClass1 ' Base class.
 a As Integer
 Public c As Integer
 '...
End Class

Class MyClass2 As MyClass1 ' Class derived from MyClass1.
 b As Integer
 Public d As Integer
 '...
End Class
Dim x As New MyClass2 ' Object x has members a%, b%, c%, and d%.
x.c% = 12
x.d% = 35
'...

Defining derived class members
You override a base class property by redefining a property in the derived class. You
override a method by redefining a sub or function in the derived class. The signature
of the overriding method must be identical to that of the base class method. That is,
the parameters to the method in the derived class must match exactly the parameters
to the method in the class in which it was originally defined.

The following example creates two classes that are related by inheritance. The script
declares a base class named Fruit, and then declares Apple and Banana to be new
classes derived from the Fruit class. The Apple and Banana classes inherit all of the
Fruit class’s variables (weight and color) and the Prepare sub.

The Prepare sub is intentionally left blank in the base class. It provides general access
and allows itself to be overridden and extended in the derived classes so that you can
access Apple or Banana functionality via a Fruit sub. Both derived classes override the
base class’s Prepare sub. The Apple class substitutes a Core sub and the Banana class
substitutes a Peel sub.

Class Fruit

weight As Single
color As String
 Sub New(w As Single, c As String)
 weight! = w!
 color$ = c$
 End Sub

5-26 LotusScript Programmer’s Guide

 Sub Prepare
 ' Assume that each derived class will override
 ' the Prepare method.
 ' Print a message...
 Print "The Fruit class's Prepare sub doesn't do anything."
 End Sub

End Class

Class Apple As Fruit ' Derive the Apple class from the Fruit class.
 seedCount As Integer
 variety As String
 Sub Core ' Add a Core sub to the Apple class.
 If (weight! > 5) Then ' You can access base class members.
 Print "This apple core method is for apples of 5 lbs. or less."
 Exit Sub
 End If
 '...
 Print "The ";weight!;" lb. ";color$;" "; variety$; _
 " apple is cored."
 End Sub

 Sub New(w As Single, c As String, v As String, s As Integer), _
 Fruit (w!,c$)
 Variety$ = v$ ' Initialize the variety.
 SeedCount% = s% ' Initialize the number of seeds.
 End Sub

 Sub Prepare
 Core ' To prepare an apple, you core it.
 End Sub
End Class

Class Banana As Fruit ' Banana class is derived from the Fruit class.
 Sub Peel ' Add a peel method to the Banana class.
 '.
 Print "The ";weight!;" lb. ";color$;" Banana is now peeled."
 End Sub
 Sub New(w As Single, c As String)
 '...
 End Sub

 Sub Prepare
 Peel ' To prepare a banana, you peel it.
 End Sub
End Class

Chapter 5: User-Defined Data Types and Classes 5-27

Extending Sub New for derived classes
You can define Sub New for a derived class to augment the definition of its base
class’s Sub New. Sub New for a derived class must provide the base class Sub New
with its expected parameters.

The parameter list for the base class’s Sub New can be a subset of the parameter list
for the Sub New of the derived class. You can pass any expression, including a
constant or a variable declared at module level, as an argument to the base class’s Sub
New. You can omit the arguments for the base class’s Sub New if the arguments for
the derived class Sub New and the base class Sub New are the same.

You extend Sub New for a derived class using the following syntax:

Sub New [(paramList)] [, baseClass (baseArgList)]

[statements]

End Sub

Element Description

paramList A comma-separated list of parameter declarations for Sub New. Use this syntax
for each parameter declaration:

[ByVal] paramName [() | List] [As dataType]

ByVal passes paramName by value: that is, the value assigned to paramName is a
local copy of a value in memory, rather than a pointer to that value. paramName()
is an array variable; List identifies paramName as a list variable; otherwise,
paramName can be a variable of any of the other data types that LotusScript
supports. As dataType specifies the variable's data type.

baseClass An identifier of the class from which the class is derived. baseClass must be the
same as the baseClass in the Class statement for the derived class.

baseArgList A comma-separated list of arguments for the Sub New of the base class. These
arguments are passed to the Sub New of the baseClass. Specify this argument list if
the arguments to Sub New of the base class do not match those for Sub New of
the derived class in number and/or data type; or if you want to pass arguments to
the baseClass’s Sub New that are different from those passed to the derived class’s
Sub New.

5-28 LotusScript Programmer’s Guide

In the following script, the derived class’s Sub New passes two variables declared at
module level to the base class.

Class Fruit
 Public weight As Single
 Public color As String
 Sub New(w As Single, c As String)
 weight! = w!
 color$ = c$
 Print "Fruit New() weight = ";w!, "color =";c$
 End Sub
End Class

Class Banana As Fruit
 Sub Peel
 '...
 End Sub

 ' Banana accepts only a weight. The Sub New passes both
 ' weight and color to the base class (Fruit).
 Sub New(w As Single), Fruit (w, "Yellow")
 '...
 Print "Banana New() Weight = ";w!
 End Sub
End Class

Dim z As New Banana (0.45) ' Create a .45 lb yellow banana.

Calling Sub New and Sub Delete
When LotusScript creates an object of a derived class, the call to the Sub New for the
derived class generates a call of the Sub New for the base class. If that base class is
itself a derived class, LotusScript calls its base class, and so on. After all the calls, the
highest-level Sub New is executed followed by the Sub New of every class in the
derivation chain. The Sub New of the class of the object being created is executed last.

When LotusScript deletes an object of a derived class, it calls the Sub Delete for the
derived class, followed by the Sub Delete of the base class’s Sub Delete, and so on for
every class in the derivation chain, up to the highest base class; that is, in the reverse
order of the Sub New execution.

Chapter 5: User-Defined Data Types and Classes 5-29

The following example demonstrates the order in which Sub New and Sub Delete are
called.

Class Fruit
 Public weight As Single
 Public color As String

 Sub New(w As Single, c As String)
 weight! = w!
 color$ = c$
 Print "Fruit: New"
 End Sub

 Sub Delete
 Print "Fruit: Delete"
 End Sub
End Class

Class Apple As Fruit
 Public seedCount As Integer

 Sub Core
 ' ...
 End Sub

 Sub New(w As Single, c As String)
 Print "Apple: New"
 End Sub

 Sub Delete
 Print "Apple: Delete"
 End Sub

End Class

Dim y As New Apple(1.14, "Red")
' Executes Fruit's Sub New and then Apple's Sub New.

Delete y
' Executes Apple's Sub Delete and then Fruit's Sub Delete.

Accessing base-class properties and methods
A derived class can call a property or method in a base class, even if that method was
overridden in the derived class. You use two dots (dotdot notation) to access a base
class’s overridden method. Dotdot notation is valid only in class scope (within a Class
statement).

5-30 LotusScript Programmer’s Guide

The syntax to call an overridden property or method is:

baseClassName..propertyName (parameters)

or

baseClassName..methodName (parameters)

For example, you can override a method just to add additional processing. You would
call the base class’s method and then do the extra processing in the derived class
method.

Using object references as arguments and return values
You can pass an object reference as an argument to a method, or to any procedure
defined to accept it. You can also use an object reference as the return value of a
procedure. LotusScript passes objects by reference, not by value.

Keep these rules in mind when you pass an object reference to a procedure:

You can pass a reference to a derived-class object to a procedure if the procedure
parameter is declared as a variable of the base class.

You cannot pass a reference to a base-class object if the procedure’s parameter is
declared as a variable of the derived class.

For example, the following script defines the PrintAccount sub at module level to take
an object as an argument:

Class Account
 Sub DepositMoney
 Print "In Account's DepositMoney sub."
 End Sub
End Class

Class CheckingAccount As Account
 Sub DepositMoney
 Print "In CheckingAccount's DepositMoney sub."
 End Sub
End Class

Sub PrintAccount(AccountArg As Account)
 Call AccountArg.DepositMoney
End Sub

Dim X As New Account
Call PrintAccount(X) 'Calls Account's DepositMoney method.

Chapter 5: User-Defined Data Types and Classes 5-31

Dim Y As New CheckingAccount
' Calls CheckingAccount's DepositMoney sub. Y is legal as an
' argument to PrintAccount, because CheckingAccount is a derived
' class of Account.
Call PrintAccount(Y)

Using the Set statement with derived class objects
You can assign a variable that contains a reference to a derived-class object to a
variable that can contain a reference to any of that object’s base classes. For example,
you can assign the value of a variable of type CheckingAccount to a variable of type
Account because the CheckingAccount class is derived from the Account class.

You cannot assign a reference in a variable of a base class to a variable that refers to an
object of a derived class. For example, you cannot assign a reference in a variable of
the Account class to a variable of the CheckingAccount class. If such an assignment
were allowed, you might expect to be able to use CheckingAccount’s methods on the
referenced object. But they might not exist, since the object might be of the Account
class.

Class Account
 '...
End Class

Class CheckingAccount As Account
 '...
End Class

Dim X As New Account
Dim Y As New Account
Dim Z As New CheckingAccount

' Legal assignment of the contents of a base-class variable
' to a base-class variable
Set X = Y

' Legal assignment of the contents of a derived-class variable
' to a base-class variable
Set X = Z

' Cannot assign base-class variable to derived-class variable.
Set Z = X ' Illegal

The last statement is illegal because, following the Set X = Z statement, the variable X
references an object of the derived class, CheckingAccount. But the statement Set Z =
X attempts to assign the value of a base class object reference variable, X, to a derived
class object reference variable, Z.

5-32 LotusScript Programmer’s Guide

Arrays and Lists of Classes
If you’re working with groups of objects, you can create an array or list that includes
the objects as elements. The following example creates an array of Fruit objects, based
on the earlier declaration of the Fruit class:

' Declare an array of references to the base class; a Fruit basket.
Dim Basket List As Fruit
Set Basket(1) = New Apple(0.86, "Green", "Macintosh", 24)
Set Basket(2) = New Apple(0.98, "Red", "Delicious",33)
Set Basket(3) = New Banana(0.32, "Yellow")
Set Basket(4) = New Apple(1.2, "Yellow", "Delicious",35)

' Prepare all of the fruit in the basket.
ForAll YummyThing in Basket
 YummyThing.Prepare ' Call each object's Prepare sub.
End ForAll

Chapter 5: User-Defined Data Types and Classes 5-33

Chapter 6
Expressions and Operators

An expression is a sequence of operators and operands that evaluates to a single value
at run time. An operand is a language element that represents a value, and an
operator is a language element that determines how the value of an expression is to be
computed from its operand or operands. A unary operator performs an operation on a
single operand, and a binary operator performs an operation on two operands.

An expression can consist of any of the following:

A literal value—for example, the integer 5 or the string “my cat Geoffrey”

A constant, variable, property, or function representing a single value—for
example, anInteger%, aString$, checkBox1.State, CStr(anInt%)

One or another of the above plus a unary operator—for example, - anInt%

Two of the above separated by a binary operator—for example, anInt% *
anotherInt%

Two other expressions separated by a binary operator—for example, (anInt% > 0)
And (anInt% <= 10)

All legal expressions evaluate to a numeric value, a String value (possibly the empty
string), NULL, EMPTY, NOTHING, or the Boolean value True (-1) or False (0).

The rest of this chapter describes the set of LotusScript operators, how they may be
combined with operands to form expressions, and how those expressions are
evaluated.

Operators
LotusScript supports the following kinds of operators:

Arithmetic, for performing basic mathematical operations such as addition, for
example:

anInt% + anotherInt%.

Concatenation, for joining discrete elements to form a single string, for example:

"My cat " & "Geoffrey".

6-1

Relational (comparison), for comparing values, for example:

' Test if the value of anInt% is less than or equal to
' the value of anotherInt%.
anInt% <= anotherInt%

Logical (bitwise), for performing bitwise arithmetic, for example:

' Calculate the logical product of binary 10 and 11.
2 And 3

Logical (Boolean), for testing expressions for their truth value (True or False), for
example:

' Test if the value of anInt% is between 1 and 10, inclusive.
(anInt% > 0) And (anInt% <= 10)

Because LotusScript uses bitwise arithmetic to determine the truth value of an
expression, the distinction between bitwise and Boolean operators is a somewhat
artificial one, however convenient (see “Logical operators” later in this chapter).

Assignment, for assigning values to variables and properties, for example:

 'Add the values of anInt% and anotherInt% and assign the result
' to the variable newInt%.
newInt% = anInt% + anotherInt%

The Is operator for comparing the values of object reference variables to see if they
are equal. Its operands may either be object reference variables or the constant
NOTHING. The Is operation returns True (-1) if both operands are variables
containing a reference to the same object, or if both operands evaluate to
NOTHING. Otherwise the Is operation returns False (0). For example:

Class ClassA
'...
End Class
Dim X As New ClassA
Dim Y As ClassA
Set Y = X
Print X Is Y
' Output: True

The following sections summarize the operators available in LotusScript.

6-2 LotusScript Programmer’s Guide

Numeric operators
The table below summarizes the operators you can use in expressions whose operands
represent numeric values.

Type of operator Operator Operation

Arithmetic ^ Exponentiation

-, + Unary negation (unary minus), unary
plus

*, / Multiplication, floating-point division

\ Integer division

Mod Modulo division (remainder)

-, + Subtraction, addition

Relational (comparison) =, <>, ><, <, <=, =<, >,
>=, =>

Equal, not equal, not equal, less than, less
than or equal to, greater than, greater
than or equal to, greater than or equal to

Logical (bitwise) Not One’s complement

And Bitwise And

Or Bitwise Or

Xor Bitwise exclusive Or

Eqv Bitwise equivalence

Imp Bitwise implication

Logical (Boolean) Not Logical negation

And Logical And

Or Logical Or

Xo Logical exclusive Or

Eqv Logical equivalence

Imp Logical implication

Chapter 6: Expressions and Operators 6-3

Arithmetic operators
When an arithmetic expression contains a NULL operand, the expression as a whole
evaluates to NULL. For example:

Dim varV
Dim anInt%
varV = NULL
varV = varV ^ 2
' Test to see if varV is NULL.
Print IsNull (varV)
' Output: True
anInt% = 5
Print IsNull(varV * anInt%)
' Output: True

Note that only variables of type Variant may be assigned a value of NULL without
causing an error. Thus, the following is perfectly acceptable:

varV = NULL
varV = varV * 5

but the following is not:

anInt% = anInt% * varV
' Generate an error.

When the result of an arithmetic operation is too large for the type of variable to which
it is assigned, LotusScript performs the necessary data type conversion (if possible):

Dim anInt As Integer
Dim aNumericV As Variant
aNumericV = 10000 ^ 10
Print aNumericV
' Output: 1E+40
Print TypeName(aNumericV)
' Output: DOUBLE
anInt% = 10000 ^ 10
' Generate an error.

LotusScript also performs the necessary rounding when performing floating point
division or modulo arithmetic on integer operands:

aDouble# = 42.5
anInt% = 64
anInt% = anInt% / 7
Print anInt%
' Output: 9
Print aDouble# Mod anInt%
' Output: 6

6-4 LotusScript Programmer’s Guide

For more information on data type conversion and rounding, see “Automatic data
type conversion” in Chapter 3.

Relational (comparison) operators
An expression consisting of two numeric operands and a relational (comparison)
operator evaluates to True (-1), False (0), or, if either or both of the operands is NULL,
to NULL. (For a description of the way in which LotusScript treats the values True (-1)
and False (0), see “Boolean values” in Chapter 3, “Data Types, Constants, and
Variables”). For example:

anInt% = 10
anotherInt% = 15
Dim theResultV As Variant

If anInt% > anotherInt% Then
 Print anInt% & " is greater than " & anotherInt% & "."
Else
 Print anInt% & " is less than or equal to " & anotherInt% & "."
End If
' Output: 10 is less than or equal to 15.
theResultV = (anInt% > anotherInt%)
Print theResultV
' Output: False
Print CInt(anInt% > anotherInt%)
' Output: 0
Print (anInt% > anotherInt%) = False
' Output: True
' because the expression (anInt% > anotherInt%) = False
' is True.

When the operands in a comparison are of different data types, LotusScript performs
the necessary conversion where possible to make the operands compatible before
doing the comparison:

LotusScript converts an EMPTY-valued operand to 0 if the other operand is
numeric.

When LotusScript performs a comparison operation on operands of different
numeric data types, the value of the operand with the lower type is promoted to
the higher type before the operation is carried out. The ordering of the numeric
data types, from lowest (Integer) to highest (Currency), is as follows:

Integer

Long

Single

Double

Currency

Chapter 6: Expressions and Operators 6-5

Conversion of a value of type Single or Double to a value of type Currency may
cause overflow or loss of precision.

When a Single value is compared to a Double, the Double is rounded to the
precision of the Single.

Relational operations on date/time values are performed on both the date and the
time. For two date/time values to be equal, both their date and time portions must
be equal. For inequality, either the date or time portion may be unequal. For all
other operations, the comparison is first done on the date portions. If the date
portions are equal, the comparison is then done on the time.

Logical operators
You use the logical operators And, Or, Xor, Eqv, and Imp to perform two kinds of
operation, which are functionally different but involve essentially the same underlying
mechanism:

Bitwise, to compare the bits in the binary representation of two numeric values
and return a new number derived from that comparison. For example:

' Calculate the logical product of binary 10 and 11
' and display the result in binary representation.
Print Bin$(2 And 3)
' Output: 10

Boolean, to test the truth value of a two-operand expression and return a value of
True (-1), False (0), or NULL. In a Boolean operation, LotusScript compares the
bits in the binary representation of the truth values for each operand and returns a
value derived from that comparison. For example:

Dim anInt% As Integer
anInt% = 5
Print (anInt% > 2) And (anInt% < 10) ' Both operands are True.
' Output: True
Print CInt((anInt% > 2) And (anInt% < 10))
' Output: -1
Print CInt(True And True)
' Output: -1

You use the logical operator Not to perform the same sorts of operations on
expressions consisting of a single operand. Not simply reverses the values of the bits
in the binary representation of its operand. For example:

Print Bin$(Not 3)
' Output: 11111111 11111111 11111111 11111100

Print Bin$(Not False)
' Output: 11111111 11111111 11111111 11111111
Print (Not True)
' Output: 0

6-6 LotusScript Programmer’s Guide

Bitwise operators
An expression consisting of the bitwise operator Not and a numeric operand evaluates
to an Integer or Long value (or to NULL if the operand is NULL). This number is the
result of reversing the values of the bits in the binary representation of the operand
(one’s complement). For example:

anInt% = 8
Print Bin$(anInt%)
' Output: 1000
anotherInt% = Not anInt%
Print Bin$(anotherInt%)
' Output: 11111111 11111111 11111111 11110111

An expression consisting of two numeric operands and a bitwise operator evaluates to
an Integer or Long value (or to NULL if one of the operands is NULL). The rules that
determine the data type of the result of a bitwise operation are the following:

LotusScript converts an EMPTY-valued operand to 0.

LotusScript rounds a floating-point operand to an integer using the rules
described in “Automatic data type conversion” in Chapter 3. The data type of the
operand is Long.

If an operand is a date/time value, LotusScript uses the numeric value of the date
as the operand. The data type of the operand is Long.

The following table summarizes the results of bitwise operations on two-operand
expressions:

Operator If bit n in expr1 is And bit n in expr2 is Then bit n in the result is

And 0 0 0

0 1 0

1 0 0

1 1 1

Or 0 0 0

0 1 1

1 0 1

1 1 1

Xor 0 0 0

0 1 1

1 0 1

1 1 0

Continued

Chapter 6: Expressions and Operators 6-7

Operator If bit n in expr1 is And bit n in expr2 is Then bit n in the result is

Eqv 0 0 1

0 1 0

1 0 0

1 1 1

Imp 0 0 1

0 1 1

1 0 0

1 1 1

The following example illustrates the use of the bitwise operators:

anInt% = 10
anotherInt% = 5
aDouble# = 2.6
Print Bin$(anInt%)
' Output: 1010
Print Bin$(anotherInt%)
' Output: 101
Print Bin$(aDouble#)
' Output: 11

theResult% = anInt% And anotherInt%
Print Bin$(theResult%)
' Output: 0
theResult% = anInt% And aDouble#
Print Bin$(theResult%)
' Output: 10

theResult% = anInt% Or anotherInt%
Print Bin$(theResult%)
' Output: 1111
theResult% = anInt% Or aDouble#
Print Bin$(theResult%)
' Output: 1011

theResult% = anInt% Xor anotherInt%
Print Bin$(theResult%)
' Output: 1111
theResult% = anInt% Xor aDouble#
Print Bin$(theResult%)
' Output: 1001

6-8 LotusScript Programmer’s Guide

theResult% = anInt% Eqv anotherInt%
Print Bin$(theResult%)
' Output: 11111111 11111111 11111111 11110000
theResult% = anInt% Eqv aDouble#
Print Bin$(theResult%)
' Output: 11111111 11111111 11111111 11110110

theResult% = anInt% Imp anotherInt%
Print Bin$(theResult%)
' Output: 11111111 11111111 11111111 11110101
theResult% = anInt% Imp aDouble#
Print Bin$(theResult%)
' Output: 11111111 11111111 11111111 11110111

Boolean operators
An expression consisting of two operands and a Boolean operator evaluates to True
(-1) if the expression is true, and False (0) if it is false, unless one of the operands is
NULL. In that case, the result may be NULL or True or False, depending on the
operator and the operand. The following table summarizes the various possibilities:

Operator If expr1 is And expr2 is The expression evaluates to

And True True True

True False False

False True False

False False False

Or True True True

True False True

False True True

False False False

Xor True True False

True False True

False True True

False False False

Eqv True True True

True False False

False True False

False False True

Continued

Chapter 6: Expressions and Operators 6-9

Operator If expr1 is And expr2 is The expression evaluates to

Imp True True True

True False False

False True True

False False True

When an operand in a numeric expression including a Boolean operator is NULL, the
whole expression evaluates to NULL except under the following circumstances:

If the operator is And and the other operand is False, then the expression
evaluates to False.

If the operator is Or and the other operand is True, then the expression evaluates
to True.

If the operator is Imp and the first operand is False, then the expression evaluates
to True.

If the operator is Imp and the second operand is True, then the expression
evaluates to True.

The following example illustrates the use of Boolean operators:

' Have the user enter two integers between 1 and 10.
' Test to see if the first (num1%) is less than 6 and
' if the second (num2%) is greater than 5. Display a
' message according to the truth value of the two tests.
Dim num1 As Integer
Dim num2 As Integer
num1% = InputBox("Enter an integer between 1 and 10:")
num2% = InputBox("Enter an integer between 1 and 10:")
Print "num1 = " & num1% & " num2 = " & num2%
If num1% <6 And num2% >5 Then
 Print "And:" & num1% & " is less than 6 and " & num2% & _
 " is greater than 5."
End If
If num1% <6 Or num2% >5 Then
 Print "Or:" & num1% & " is less than 6 or " & num2% & _
 " is greater than 5, or both."
End If
If num1% <6 XOr num2% >5 Then
 Print "XOr: " & num1% & " is less than 6 or " & num2% & _
 " is greater than 5, but not both."
End If
If num1% <6 Eqv num2% >5 Then
 Print "Eqv:" & num1% & " is less than 6 and " & num2% & _
 " is greater than 5, or " & num1% & " is greater than 5 and " & _
 num2% & " is less than 6."
End If

6-10 LotusScript Programmer’s Guide

If num1% <6 Imp num2% >5 Then
 Print "Imp:" & num1% & " is less than 6 and " & num2% & _
 " is greater than 5, or " & num1% & _
 " is greater than 5 and " & num2% & _
 " is less than 6, or " & num1% & _
 " is greater than 5 and " & num2% & " is greater than 5."
End If
' Sample Output:
' num1 = 6 num2 = 6
' Or: 6 is less than 6 or 6 is greater than 5, or both.
' XOr: 6 is less than 6 or 6 is greater than 5, but not both.
' Imp: 6 is less than 6 and 6 is greater than 5, or 6 is
' greater than 5 and 6 is less than 6, or 6
' is greater than 5 and 6 is greater than 5.

' num1 = 10 num2 = 1
' Eqv: 10 is less than 6 and 1 is greater than 5, or 10 is greater
' than 5 and 1 is less than 6.
' Imp: 10 is less than 6 and 1 is greater than 5, or 10 is
' greater than 5 and 1 is less than 6, or
' 10 is greater than 5 and 1 is greater than 5.

' num1 = 5 num2 = 9
' And: 5 is less than 6 and 9 is greater than 5.
' Or: 5 is less than 6 or 9 is greater than 5, or both.
' Eqv: 5 is less than 6 and 9 is greater than 5, or 5 is greater than
' 5 and 9 is less than 6.
' Imp: 5 is less than 6 and 9 is greater than 5, or 5 is
' greater than 5 and 9 is less than 6, or
' 5 is greater than 5 and 9 is greater than 5.

String operators
The following table summarizes the operators you can use in expressions whose
operands represent string values:

Type of operator Operator Operation

Concatenation &, + Concatenation.

Relational (Comparison) =, <>, ><, <, <=, =<, >,
>=, =>

Equal to (same as), not equal to (not same
as), not equal to (not same as), earlier in
the sort order than, earlier in the sort order
than or same as, earlier in the sort order
than or same as, later in the sort order
than, later in the sort order than or same
as, later in the sort order than or same as.

Like Contains (substring matching with
wildcards)

Chapter 6: Expressions and Operators 6-11

Concatenation operators
LotusScript offers two operators for concatenating strings (or operands that can be
interpreted as strings): ampersand (&) and plus (+). Plus (+) is potentially ambiguous,
since it can be interpreted as the arithmetical addition operator. LotusScript
determines whether to interpret the plus as a concatenation operator or an addition
operator on the basis of the operands in the expression in which it appears. Use the
ampersand operator to ensure a concatenation operation.

The result of a concatenation of two strings is a string containing the first operand
followed immediately by the second operand. If one of the operands is not a string,
LotusScript performs the necessary conversion according to the following rules:

An EMPTY value is converted to the empty string ("").

NULL is treated as though it were the empty string.

Numeric operands are converted to their text representation (if the concatenation
operator is the ampersand).

A date/time value is converted to a date/time string.

For example:

anInt% = 123
aString$ = "Hello"
anotherString$ = "world"
varV = NULL
Print aString$ & ", " & anInt% & " " & varV & _
 anotherString$ & "."
' Output: Hello, 123 world.

Relational (comparison) operators
You use the relational (comparison) operators =, <>, ><, <, <=, =<, >, >=, and =>to
ascertain the relative positions of two strings in ASCII sort order. The result of
comparing two strings in this way is a value of True (-1), False (0), or NULL (if one of
the operands is NULL). Whether the comparison is case-sensitive or case-insensitive
depends on the setting of the Option Compare statement in the module in which the
comparison takes place. The default setting (Option Compare Case) means that string
comparison is case-sensitive: an uppercase character has a different value—occupies a
different position in the sort order—than its lowercase counterpart. The sort order is
determined by your country and language settings.

An alternative way of making string comparison case-sensitive is with the Option
Compare Binary statement: Option Compare Binary specifies that string comparison is
case-sensitive, and the sort order is determined by the platform on which your
product is running LotusScript.

Use the Option Compare NoCase statement makes string comparison case-insensitive:
an uppercase character and its lowercase counterpart share the same position in the
sort order.

6-12 LotusScript Programmer’s Guide

The following example illustrates the use of relational operators to perform string
comparison. In the example, the user enters a character, which is then checked to see if
it falls in the range A-Z. If not, the character is checked to see if it falls in the range a-z.

Option Compare Binary
Dim theChar As String
theChar$ = InputBox$("Please enter a character:")
If ((theChar$ >= "A") And (theChar$ <= "Z")) Then
 Print "You entered an uppercase character."
ElseIf ((theChar$ >= "a") And (theChar$ <= "z")) Then
 Print "You entered a lowercase character."
Else
 Print "You entered a nonalphabetic character."
End If

Like
You use the Like operator to test a string to see if it matches a text pattern that you
specify. You can use wildcard characters in the specification of the text pattern. The
operation returns a value of True (-1) if the string matches the text pattern, False (0) if
the string does not match the pattern, or NULL if either the string or the contents of
the text pattern is NULL. The comparison of string to text pattern is either
case-sensitive or case-insensitive, depending on the setting of the Option Compare
statement in the module in which the comparison takes place (see the preceding
section of this chapter).

Use a statement of the following form to test a string to see if it matches a specified
text pattern and assign the result of the test to a variable:

result% = SourceString Like TextPattern

where SourceString is an expression that evaluates or can be converted to a string, and
TextPattern, which must be enclosed in quotation marks, is a sequence of individual
ANSI characters and any of the following wildcard characters or collections of
characters alone or in combination:

Wildcard Matches

? Any one character

Any one digit from 0 through 9

* Any number of characters (zero or more)

[characters] Any of the characters in the list or character range specified here

[!characters] Any character not included in the list or character range specified here

Chapter 6: Expressions and Operators 6-13

To match characters in a list, enclose the characters between square brackets with no
spaces or other delimiters between characters (unless you want the space character to
be part of the list). For example, [1, 2, 3, A, B, C] represents the characters 1, comma,
space, 2, 3, A, B, and C (the redundant occurrences of the space and comma are
ignored). But [123ABC] represents the characters 1, 2, 3, A, B, and C (with no space or
comma character).

To match characters in a range, separate the lower and upper bounds with a hyphen,
as in [1-5]. Always specify the range in ascending sort order (A-Z rather than Z-A).
Sort order is determined by the setting of Option Compare. When you specify multiple
ranges, you don’t have to separate them with anything: for example, [1-5A-C] contains
the ranges 1-5 and uppercase A-C.

Use a character list to match the following characters: comma (,), exclamation mark (!),
question mark (?), pound sign (#), asterisk (*), and left bracket ([). To match against a
right bracket (]) or hyphen (-), include the character outside any range or list in
TextPattern.

The following example illustrates the various ways you can test a string with Like to
see if it contains a given substring:

' Make string comparison case-sensitive.
Option Compare Binary
Dim anArray(1 To 6) As String
anArray(1) = "Juan"
anArray(2) = "Joan"
anArray(3) = "Alejandro"
anArray(4) = "Jonathan"
anArray(5) = "Andrea"
anArray(6) = "Jane"
UB% = UBound(anArray)

' Test each name in anArray$ to see if it contains a substring
' consisting of any characters followed by uppercase J
' followed by any characters followed by lowercase n followed
' by any characters.
For counter% = 1 to UB%
 If anArray(counter%) Like "*J*n*" Then
 Print anArray(counter%) & " " ;
 End If
Next
Print ""
' Output: Juan Joan Jonathan Jane

6-14 LotusScript Programmer’s Guide

' Test the lowercase representation of each name in anArray$
' to see if it contains a substring consisting of any
' characters followed by lowercase j followed by any single
' character followed by lowercase n followed by any characters.
For counter% = 1 to UB%
 If LCase$(anArray(counter%)) Like "*j?n*" Then
 Print anArray(counter%) & " " ;
 End If
Next
Print ""
' Output: Alejandro Jonathan Jane

' Test each name in anArray$ to see if it contains
' a numeric character.
badRec% = 0
For counter% = 1 to UB%
 If anArray(counter%) Like "*#*" Then
 Print anArray(counter%) & " contains a numeral."
 badRec% = badRec% + 1
 End If
Next
If badRec% = 0 Then
 Print "No name contains a numeral."
End If
' Output: No name contains a numeral.

' Test the lowercase representation of each name in anArray$
' to see if it ends in a vowel.
For counter% = 1 to UB%
 If anArray(counter%) Like "*[aeiou]" Then
 Print anArray(counter%) & " " ;
 End If
Next
Print ""
' Output: Alejandro Andrea Jane

' Test each name in anArray$ to see if it begins with a
' character in the range of uppercase A to uppercase C,
' inclusive.
For counter% = 1 to UB%
 If anArray(counter%) Like "[A-C]*" Then
 Print anArray(counter%) & " " ;
 End If
Next
Print ""
' Output: Alejandro Andrea

Chapter 6: Expressions and Operators 6-15

' Test each name in anArray$ to see if it begins with a
' character other than uppercase J.
For counter% = 1 to UB%
 If anArray(counter%) Like "[!J]*" Then
 Print anArray(counter%) & " " ;
 End If
Next
Print ""
' Output: Alejandro Andrea

' LotusScript converts a numeric value to a string
' when it is the operand to the left of the Like operator.
anInt% = 12345
aDouble# = 123.45
' See if anInt% starts with two digits followed
' by the digits 23 followed by zero or more digits (or characters).
If anInt% Like "##34*" Then
 Print "We have a match."
End If
' Output: We have a match.
' See if aDouble# starts with two digits followed by a 3
' followed by a single character (presumably a period or a comma)
' followed by any digit followed by zero or more digits (or
characters).
If aDouble# Like "##3?#*" Then
 Print "We have a match."
End If
' Output: We have a match.

Precedence and associativity
Rules of precedence and associativity determine the way an expression with multiple
operands is evaluated. Rules of precedence determine the order in which different
types of operations are performed, and rules of associativity determine the order in
which operations of equal precedence are performed. In general terms, arithmetic
operations are performed first, then comparison operations, then logical operations,
and then assignment. The general rule governing associativity is that it proceeds from
left to right.

6-16 LotusScript Programmer’s Guide

Within each general type of operation, there are also rules of precedence and
associativity that determine the order in which operations are performed. In order of
highest-to-lowest, the precedence of LotusScript operators is as follows:

Type of operator Operator Operation

Arithmetic ^ Exponentiation

- Unary negation (unary minus)

*, / Multiplication, floating-point division

\ Integer division

Mod Modulo division (remainder)

-, + Subtraction, addition

Concatenation & String concatenation

Relational (Comparison) =, <>, ><, <, <=, =<, >,
>=, =>

Numeric comparison Equal to, not equal,
to, not equal to, less than, less than or
equal to, less than or equal to, greater
than, greater than or equal to, greater than
or equal to
String comparison: Equal to, not equal to,
not equal to, less than, less than or equal
to, less than or equal to, greater than,
greater than or equal to, greater than or
equal to

Like Contains (substring matching)

Logical Not Logical negation or one's complement

And Boolean or bitwise And

Or Boolean or bitwise Or

Xor Boolean or bitwise exclusive Or

Eqv Boolean or bitwise logical equivalence

Imp Boolean or bitwise logical implication

Object reference
comparison

Is Refers to the same object

Assignment = Assignment

Associativity rules govern the order in which operators of equal precedence are
evaluated: binary operations of equal precedence are performed left to right.

Chapter 6: Expressions and Operators 6-17

The following statement illustrates the way precedence and associativity work. The
operations of multiplication and division are performed first in left to right order; then
the subtraction operation; and then the bitwise And operation.

Print 4 And 10 - 2 * 3 / 2
' Output: 4 because 2 * 3 = 6
' 6 / 2 = 3
' 10 - 3 = 7 (binary 111)
' 4 (binary 100) And 7 (binary 111) = 4 (binary 100).

You can alter the default order in which operations are performed by enclosing the
expressions you want evaluated first in parentheses. For example:

anInt% = 5
anotherInt% = 10
aThirdInt% = 7
print anInt% - (anotherInt% + aThirdInt%)
' Output: -12

or, alternatively:

theResult% = -1 Or -1 Imp 0
Print theResult%
' Output: False
' because -1 Or -1 = True, and True Imp 0 is False.
theResult% = -1 Or (-1 Imp 0)
Print theResult%
' Output: True
' because -1 Imp 0 is False, and -1 Or False is True.

Note A function is evaluated before any of the operators in an expression. For
example:

Print -1 > 0
' Output: False
Print Abs(-1) > 0
' Output: True

6-18 LotusScript Programmer’s Guide

Chapter 7
Directing Traffic Within an Application

The flow of execution of a script generally follows the sequence of statements in the
script. However, certain statements and conditions alter the flow of execution. These
are summarized in the following section of this chapter, “Flow of Execution.”

The remainder of this chapter, the section “Flow Control Statements,” describes the
behavior of particular statements that alter the flow of execution: block statements,
branching statements, and the End and Exit statements. (For definitions of these kinds
of statements, see the following section, “Flow of Execution.”) The flow of execution
may also be changed at run time by the occurrence of an error. For information on the
statements for processing run-time errors in a script, see Chapter 8, “Error
Processing.”

Flow of Execution
Comments are not executed at all. These include any source text preceded on a line by
the comment marker apostrophe ('), the text in a Rem statement, and the text enclosed
between the compiler directives %Rem and %End Rem. The LotusScript compiler
reads and discards these.

The compiler directive %Include directs the compiler to replace the directive by other
text before continuing to compile. The compiler directive %If directs the compiler to
select or omit text contained within the scope of the directive, replacing the directive
by the selected text. The result of the replacement based on %Include or %If is
compiled as if it appeared in the original script. The flow of execution in the compiled
result follows the same rules as the flow of execution in the rest of the script.

Declarations include the Declare statement for forward references, the Declare
statement for external C calls, the Const statement, and the Dim statement. With one
exception, declarations do not product executable code. The result of a declaration is
information about a procedure, a variable, or a constant; for example, its type,
dimensions, or value. This governs the behavior of the script that uses the declared
item; but the declaration itself is not executed when the script runs. The exception is a
Dim statement that includes the keyword New. The result of this statement is to
construct a new object of a class; and this is done when the script is executed. This is
the only declaration that generates executable code.

7-1

A few other statements also produce no executable code. These include Option Base,
Option Compare, Option Declare, and Option Public; the Type statement; and the
Deftype statements.

Besides the Type statement, the definition statements include the Class statement and
the procedure definition statements: Function, Sub, Get Property, and Set Property.
While these definition statements produce executable code, this code is not executed in
place. LotusScript executes a procedure only when it is explicitly invoked. When the
procedure completes execution, the script execution continues from the point where
the procedure was invoked. There are two pairs of procedures, however, that are
executed without being explicitly invoked:

Sub New and Sub Delete

These are executed when an object is created or deleted, respectively.

Sub Initialize and Sub Terminate

Sub Initialize is executed when the compiled module representing the script is
loaded. Sub Terminate is executed when the module is unloaded.

Certain block statements define an altered flow of execution within the body of the
statement. These include If...Then...Else, If...Then...ElseIf, and Select Case; and the
iterative block statements Do, While, For, and ForAll.

Branching statements also specify an altered flow of execution. These are GoTo,
If...GoTo...Else, On...GoTo, GoSub, On...GoSub, and Return. When one of these is
executed, the flow of execution depends in general on run-time conditions.

The End statement and the Exit statement also change the flow of execution:

The End statement can appear anywhere within a procedure. When the statement
is executed, script execution ends.

The Exit statement can appear within a Do statement, a For statement, or a ForAll
statement; or within a procedure. When the Exit statement is executed,
LotusScript ends execution of the statement or the procedure. Execution continues
as it would following an ordinary completion of the Do, For, or ForAll statement,
or following an ordinary return from the procedure.

The flow of execution may also be changed at run time by the occurrence of an error.
Either execution ends, or an On Error statement in the script specifies how to respond
to the error, in one of these ways:

By continuing execution with the statement following the statement that caused
the error

By invoking an error handling routine in the current procedure

By seeking an error handling routine in a procedure within the chain of procedure
calls that invoked the current procedure

7-2 LotusScript Programmer’s Guide

An error handling routine ends with a Resume statement that directs LotusScript to
resume execution either at a designated labeled statement, or at the statement that
caused the error, or at the statement following the statement that caused the error.

Note that statement labels can appear only within procedures. A statement at module
level in a script — not contained within a procedure — cannot be labeled. Since any
given label is known only within the procedure where it is defined, a branching
statement that may transfer control to a labeled statement can appear only within the
same procedure as the labeled statement. The statements that may transfer control to a
labeled statement are GoTo, GoSub, On...GoTo, On...GoSub, If...GoTo...Else, and
Resume. If an error occurs that is governed by an On Error...GoTo label statement, the
On Error statement and the labeled statement must be in the same procedure.

The block statements, the branching statements, and the End and Exit statements are
collectively called flow control statements. The rest of this chapter describes these
statements.

Flow Control Statements
 The flow control statements fall into several functional groups:

The block statements that specify executing one or another group of subsidiary
statements, depending on specified conditions. These statements are
If...Then...Else, If...Then...ElseIf, and Select Case.

Branching statements, which specify continuing execution at some other point in
the script, possibly depending on specified conditions. These statements are GoTo,
If...GoTo...Else, On...GoTo, GoSub, On...GoSub, and Return.

Early termination statements (Exit and End), which specify returning from a
procedure, or ending execution of a Do, For, or ForAll statement, before execution
reaches the statement that ends the procedure or the statement.

The iterative block statements, which specify repeating a group of subsidiary
statements some number of times, or while or until some specified condition is
satisfied. These statements are Do, While, For, and ForAll.

The remaining sections in this chapter discuss these statements in the order listed
above.

The following are general comments that apply to some or all of the flow control
statements.

The flow of control within each of these statements is different for each statement.

 The flow of control when the statement has completed executing is as follows:

The branching statements direct LotusScript to continue executing the script
elsewhere, by jumping from the current location to another location.

Chapter 7: Directing Traffic Within an Application 7-3

The End statement terminates execution of the current procedure, and also
execution of any procedure in the sequence of calls that called the current one.
Exit Sub, Exit Function, and Exit Property cause an immediate return from the
procedure. Exit Do, Exit For, and Exit ForAll cause execution to continue at the
statement following the end of the Do, For, or ForAll statement.

The other flow control statements cause execution to continue at the statement
following the end of the flow control statement, unless a branching statement or
an Exit or End statement within the flow control statement causes a jump before
the end is reached. The branching statements If...GoTo...Else, On...GoTo, and
On...GoSub behave this way also if the condition that triggers the jump is not
true.

There is no built-in limit on the level of nesting of these statements. For example, a
Do statement may contain another Do statement that contains a third Do
statement, and so on.

Flow control statements may be nested within each other. For example, a Do
statement may contain a For statement that contains another Do statement.

If...Then...Else statement
The If...Then...Else statement specifies conditional execution of either one group or
another group of statements, depending on the value of an expression. Each statement
group is usually just one short statement, since the entire If...Then...Else statement
must be written on one line.

You commonly use the If...Then...Else statement in one of these two forms:

If condition Then statements Else statements

In this form, either the Then clause is executed (if condition is TRUE); or the Else
clause is executed (if condition is FALSE). For example:

If doCount% >= 1000 Then flagForm% = -1 Else flagForm% = 0

If condition Then statements

In this form, the Then clause is executed if condition is TRUE; otherwise, nothing is
executed. For example:

If doCount% >= 1000 Then flagForm% = -1

For either form, execution continues with the statement on the next line. Nothing can
follow the If...Then...Else statement on the same line, since LotusScript recognizes a
newline as the If...Then...Else statement terminator.

7-4 LotusScript Programmer’s Guide

In the following example, the Then clause consists of the single statement Exit Do; and
there is no Else clause.

' This example computes the elapsed time to execute
' 1000 iterations of a simple Do loop.
' Time may vary, depending on the workstation.
Dim doCount As Integer, startTime As Single
startTime! = Timer()
doCount% = 0

Do
 ' Increment doCount% through 1000 iterations of the Do loop.
 doCount% = doCount% + 1
 If doCount% > 1000 Then Exit Do
Loop
' Come here upon exit from the Do loop.
Print Timer() - startTime! "seconds for 1000 iterations"
' Output:
' .109375 seconds for 1000 iterations

For more information about the Do and Exit statements, see the sections on these
statements later in this chapter.

To include more than one statement in the Then clause, separate the statements by the
colon (:) statement separator, as in this variation:

Do
 If doCount% >= 1000 Then Print "Done." : Exit Do
Loop

You can rewrite the two statements in the Do loop in the preceding example as a
single If...Then...Else statement. The Do loop then looks like this:

Do
 If doCount% >= 1000 Then Exit Do Else doCount% = doCount% + 1
Loop

This is a more compact loop than the one in the preceding example, but it runs more
slowly.

The condition in the If...Then...Else statement can be simple, as in the preceding
example, or complex. Here is an If...Then statement with a more complex condition:

If Abs(tempProx! - approx!) >= .00001 And iters% < 40 Then Exit Do

LotusScript identifies a statement as an If...Then...Else statement provided it has the
form If condition Then, or If condition Then statements Else, followed on the same line
by more source code. Unless this language appears on the same line, LotusScript
interprets the statement as an If...Then...ElseIf statement.

Chapter 7: Directing Traffic Within an Application 7-5

You can extend the statement to more than one line, by ending each line except the last
with the line-continuation character, an underscore (_). But if the statement is long
enough to force continuation onto a second line, it may be more readable to rewrite it
as an If...Then...ElseIf statement. (For more information, see the next section.)

If...Then...ElseIf statement
The If...Then...ElseIf statement specifies conditional execution of one or another group
of statements, depending on whether one or more expressions evaluates to TRUE or
FALSE. The syntax is:

If condition Then

statements

[ElseIf condition Then

statements]

[ElseIf condition Then

statements]
...

[Else

statements]

End If

The line breaks in actual statements must appear just as shown in the syntax diagram.

Only one group of statements is executed: either the group following the first
condition that evaluates to TRUE, or else those statements following the Else keyword.
(If no condition evaluates to TRUE and there is no Else clause, then no statements are
executed.) Once a group of statements is executed, no further condition expressions
are evaluated; so the order of the ElseIf clauses is important. Program execution
continues with the first statement following the End If keywords.

The following example using If...Then...ElseIf statements demonstrates making a
user-supplied whole number into an ordinal by adding the appropriate English suffix,
such as “st” for 1 and “th” for 17. The script responds differently to numbers outside
the range 0 to 50 (an arbitrary limit) and to numbers with a fractional part. In the
script, note the nesting of three levels of If...Then...ElseIf statement. The example
illustrates that each statement needs its own End If phrase. An End If phrase ends only
the innermost statement that hasn’t yet ended.

7-6 LotusScript Programmer’s Guide

Dim anInt As String, lastDigit As String, printNum As String
anInt$ = InputBox$("Enter a whole number between 0 and 50:")
' Test for a number; print message if not, and do nothing more.
If Not IsNumeric(anInt$) Then
 MessageBox("That's not a number.")
' Test for whole number; print message if not, and do nothing more.
ElseIf Fraction(CSng(anInt$)) <> 0 Then
 MessageBox("That's not a whole number.")
Else
 ' Test for number within required range.
 If CInt(anInt$) <= 50 And CInt(anInt$) >= 0 Then
 ' Number is within range. Find and append the correct suffix.
 lastDigit$ = Right$(anInt$, 1)
 If lastDigit$ = "1" And anInt$ <> "11" Then
 printNum$ = anInt$ & "st"
 ElseIf lastDigit$ = "2" And anInt$ <> "12" Then
 printNum$ = anInt$ & "nd"
 ElseIf lastDigit$ = "3" And anInt$ <> "13" Then
 printNum$ = anInt$ & "rd"
 Else
 printNum$ = anInt$ & "th"
 End If
 ' Print the ordinal in a message box.
 MessageBox("This is the " & printNum$ & " number.")
 Else
 ' Number is out of range. Print message, and do nothing more.
 MessageBox("That number's out of range.")
 End If
End If
' Output:
' (For user input 3): "This is the 3rd number."
' (For user input -5.1): "That's not a whole number."
' (For user input 51): "That number's out of range."
' (For user input abacus): "That's not a number."

The example would be easier to read if the conditional processing were not nested
three levels deep. However, an If...Then...ElseIf statement that is not included within
another statement can be skipped during execution only by executing a transfer of
control: either by an Exit or End statement or by a transfer to a labeled statement. All
of these mechanisms — the Exit statement, the End statement, GoTo, GoSub, and
labels — are illegal outside of a procedure. Thus, if the main logic of this script were
made into the contents of a procedure, it could be rewritten more simply. For this
algorithm, that would be the conventional way of doing it. Later in this chapter, the
same task is performed in a Select Case statement.

Chapter 7: Directing Traffic Within an Application 7-7

The contents of the If clause, the ElseIf clauses, and the Else clause must be written in
the correct order. In the following example, look at the order of the contents of the If
and ElseIf and Else clauses:

Dim timeTest As Single
timeTest! = Timer() ' The Timer function returns
 ' the number of seconds elapsed since midnight.
If timeTest! < 43200 Then
 Print "Morning"
ElseIf timeTest! < 64800 Then
 Print "Afternoon"
Else
 Print "Evening"
End If

The following example shows the result of exchanging the order of the contents of the
If clause and the ElseIf clause. Executing the example with this different order yields a
wrong result for a Timer() value of 38017, for example. The Timer() value represents a
mid-morning time, but the example prints Afternoon.

Dim timeTest As Single
timeTest! = Timer() ' The Timer function returns
 ' the number of seconds elapsed since midnight.
If timeTest! < 64800 Then
 Print "Afternoon"
ElseIf timeTest! < 43200 Then
 Print "Morning"
Else
 Print "Evening"
End If

Select Case statement
The Select Case statement specifies conditional execution of one group of statements
selected from one or more groups, depending on the value of an expression. It is
similar to the If...Then...ElseIf statement.

7-8 LotusScript Programmer’s Guide

The syntax is:

Select Case selectExpr

[Case conditionList

[statements]]

[Case conditionList

[statements]]

...

[Case Else

[statements]]

End Select

At run time, the Select Case statement compares the value of a single selectExpr
expression with the values established by each conditionList. It executes the statements
for the first conditionList matched by the value of selectExpr. Either a single group of
statements is executed, or none is executed. If you include a Case Else clause, it’s
executed only if selectExpr fails all conditions in all condition lists. After a clause is
executed, LotusScript continues execution at the first statement following the End
Select statement.

The following example of Select Case replicates the main example used to illustrate
If...Then...ElseIf, which adds a suffix to a whole number to turn it into an ordinal
number. The results of the two examples are identical for all user inputs. In this
version, however, the principal logic is written as the body of a function definition
rather than as module-level statements, and the function is called by a module-level
statement. The function accepts a string and returns one of the strings shown. The
function is called with the string obtained through InputBox$; after the function
returns, the MessageBox statement writes the output.

' This script defines and calls the function SetOrd.
' This function accepts a string argument, determines whether it is
' of the right kind, and returns either a message about the argument,
' or a string showing the argument with the correct suffix.
Function SetOrd (anInt As String) As String
 Dim printNum As String
 ' If argument can't be converted to a number,
 ' assign a message and do nothing more.
 If Not IsNumeric(anInt$) Then
 SetOrd$ = "That's not a number."
 Exit Function
 ' If argument is not a whole number,
 ' assign a message and do nothing more.
 ElseIf Fraction(CSng(anInt$)) <> 0 Then
 SetOrd$ = "That's not a whole number."
 Exit Function

Chapter 7: Directing Traffic Within an Application 7-9

 ' If number is not in range, assign a message and do nothing more.
 ElseIf CInt(anInt$) > 50 Or CInt(anInt$) < 0 Then
 SetOrd$ = "That number's out of range."
 Exit Function
 End If
 ' Determine and append the correct suffix.
 Select Case anInt$
 Case "1", "21", "31", "41": printNum$ = anInt$ & "st"
 Case "2", "22", "32", "42": printNum$ = anInt$ & "nd"
 Case "3", "23", "33", "43": printNum$ = anInt$ & "rd"
 Case Else: printNum$ = anInt$ & "th"
 End Select
 SetOrd$ = "This is the " & printNum$ & " number."
End Function
' Call the function.
MessageBox(SetOrd(InputBox$("Enter a whole number between 0 and
50:")))

Note the last line of the example. It is the only executable code outside of the function
SetOrd in the example. This line instructs the MessageBox statement to display a
message based on the user input received by the InputBox$ function. The value
entered by the user is passed to SetOrd, which determines what MessageBox displays.

In several ways, the function SetOrd using Select Case is a cleaner, more legible
algorithm than the nested If...Then...ElseIf statements of the earlier version:

There are no nested statements.

The phrases Case, Select Case, and Case Else clearly mark the set of logical cases.

Within each Case clause, the condition list enumerates the exact inputs that satisfy
the clause. The Right$ function to obtain the last character in a string isn’t needed,
and there are no comparison operators. The inputs 11, 12, and 13 aren’t specified
as exceptions.

On each line beginning with Case, a colon (:) separates the condition from its
consequent clause, and each condition and its clause appear on a single line.

Using the first two Exit Function clauses within the function definition enables the
function to return control to the caller at either of two points without executing the
rest of the function.

Also, the algorithm now reflects the logical separation of operations:

The function performs the manipulations on the number entered by the user.

Only the input and output operations and the function call run outside the
procedure.

7-10 LotusScript Programmer’s Guide

GoTo and If...GoTo...Else statements
The GoTo statement transfers control unconditionally. The syntax is:

GoTo label

When this statement is executed, LotusScript transfers control to the statement labeled
label. The location of the GoTo statement in the procedure is unrelated to the location
of a labeled statement that it transfers control to. The only requirement is that the
GoTo and its target labeled statement must be in the same procedure. The actual flow
of control is determined at run time.

The following example uses a GoTo statement to transfer control appropriately within
a sub that checks how closely a number approximates PI. A user types a guess at the
value of PI to some number of digits, and the script checks the value and reports on it.

Sub ApproxPi(partPi As Double)
 Dim reportMsg As String
 ' See how good the approximation is, and assign a response message.
 reportMsg$ = "Not close at all"
 If Abs(PI - partPi#) < 1E-12 Then
 reportMsg$ = "Very close"
 GoTo MsgDone
 End If
 If Abs(PI - partPi#) < 1E-6 Then reportMsg$ = "Close but not very"
 ' Print the message and leave.
MsgDone: MessageBox(reportMsg$)
End Sub
' Ask the user to guess at PI; then call ApproxPi, and report.
Call ApproxPi(CDbl(InputBox$("A piece of PI, please:")))

The effect of the transfer using GoTo in the example is to skip the If statement that
checks whether the supplied approximation is “Close but not very.” If it's already
known to be “Very close,” it makes no sense to check further.

The following example uses GoTo to iterate through the sequence of calculations .25 ^
.25, .25 ^ (.25 ^ .25), .25 ^ (.25 ^ (.25 ^ .25)), and so on, until either two successive
expressions in this sequence are within .0001 of each other, or 40 expressions have
been calculated.

Chapter 7: Directing Traffic Within an Application 7-11

Sub PowerSeq
 Dim approx As Single, tempProx As Single, iters As Integer
 approx! = .25
 iters% = 1
ReIter:
 tempProx! = approx!
 approx! = .25 ^ tempProx!
 If Abs(tempProx! - approx!) >= .0001 And iters% < 40 Then
 ' Iterate again.
 iters% = iters% + 1
 GoTo ReIter
 End If
 Print approx!, Abs(approx! - tempProx!), "Iterations:" iters%
End Sub
Call PowerSeq()
' Output:
' .5000286 6.973743E-05 Iterations: 25

In this example, GoTo initiates another iteration. It appears within the Then clause of
an If...Then...ElseIf statement. If either two successive expressions are very close in
size, or the limit of 40 iterations has been reached, the Then clause is skipped and the
next statement following End If, the Print statement, is executed. Then the sub ends.

The example can be generalized to calculate the sequence of values x ^ x, x ^ (x ^ x),
and so on, for any value x between 0 and 1, instead of .25 ^ .25, .25 ^ (.25 ^ .25), and
so on.

If...GoTo...Else Statement
The If...GoTo...Else statement is simply a convenient way to abbreviate a statement
that would otherwise be written If...Then GoTo label Else. It can be used when the only
action you want to take in the Then clause of an If...Then...Else statement is to transfer
unconditionally. The description of If...Then...Else earlier in this chapter applies to this
statement, with the GoTo clause substituted for the Then clause. The statement must
be written on one line.

For example, here is the executable part of the sub from the preceding example,
revised to use If...GoTo (there is no Else clause in this case):

 approx! = .25
 iters% = 0
ReIter:
 iters% = iters% + 1
 tempProx! = approx!
 approx! = .25 ^ tempProx!
 If Abs(tempProx! - approx!) >= .0001 And iters% < 40 GoTo ReIter
 Print approx!, Abs(approx! - tempProx!), "Iterations:" iters%

This is a more direct expression of the logic of the calculation.

7-12 LotusScript Programmer’s Guide

On...GoTo statement
The On...GoTo statement has this syntax:

On expression GoTo label, [, label]...

It transfers control to a target label depending on the value of expression. It transfers
control to the first label if expression is 1, to the second label if expression is 2, and so on.

The location of the On...GoTo statement in the procedure is unrelated to the location of
a labeled statement that it transfers control to. The only requirement is that the
On...GoTo and its target labeled statements must be in the same procedure. The actual
flow of control is determined at run time.

The following sub uses On...GoTo to run one of two simple LotusScript performance
tests.

' By typing 1 or 2 into an input box, the user chooses
' whether to time 1000 iterations of a Do loop,
' or count the number of Yield statements executed in one second.
' Using On...GoTo, the script branches to run one test or the other
' and print the result.
Sub RunPerfTest
 Dim directTempV As Variant, directTest As Integer, i As Integer
 Dim startTime As Single
SpecTest: directTempV = InputBox$(|Type 1 for iteration time,
 or 2 for # of yields:|)
 If Not IsNumeric(directTempV) Then Beep : GoTo SpecTest
 directTest% = CInt(directTempV)
 If directTest% < 1 Or directTest% > 2 _
 Then Beep : GoTo SpecTest
 i% = 0
 ' Branch on 1 or 2.
 On directTest% GoTo TimeCheck, ItersCheck
TimeCheck: startTime! = Timer()
 Do While i% <= 1000
 i% = i% + 1
 Loop
 Print "Time in seconds for 1000 iterations: " Timer() - startTime!
 Exit Sub
ItersCheck: startTime! = Timer()
 Do
 Yield
 i% = i% + 1
 Loop While Timer() < startTime! + 1
 Print "Number of Yields in 1 second: " i%
End Sub
Call RunPerfTest()

Chapter 7: Directing Traffic Within an Application 7-13

Three runs of the sub RunPerfTest might have these results, depending on the speed of
the computer where LotusScript is running::

' Output:
' (With input 2) Number of Yields in 1 second: 975
' (With input 1) Time in seconds for 1000 iterations: .109375
' (With input 2) Number of Yields in 1 second: 952

GoSub, On...GoSub, and Return statements
These three statements have the forms:

GoSub label

On expression GoSub label [, label]...

Return

When LotusScript encounters a statement of the form GoSub label, the following
occurs:

It transfers control to the statement labeled label

It executes statements beginning at label, continuing until one of the following
occurs:

A Return statement is encountered

In this case, control returns to the statement following the GoSub statement

An End statement is encountered; or an Exit Function, Exit Sub, or Exit
Property statement is encountered; or an End Function, End Sub, or End
Property statement is encountered.

In these cases, execution of the script ends (End statement), or execution of the
enclosing procedure ends (one of the other statements).

Ordinarily, you use the Return statement. In that case, the group of statements
executed after the labeled statement and before the Return statement, including any
other transfers of control, acts as a subroutine within the current procedure.

The statement On expression GoSub label, label, ... enables transferring control similarly,
except that the target label is conditioned on the value of expression: control transfers
to the first label if expression is 1, to the second label if expression is 2, and so on. (Any of
these labels may be the same.) The Return statement returns control to the statement
following On...GoSub. The next example illustrates this.

The location of the GoSub statement in the procedure is unrelated to the location of a
labeled statement that it transfers control to. The only requirement is that the GoSub
and its target labeled statements must be in the same procedure. The actual flow of
control is determined at run time.

7-14 LotusScript Programmer’s Guide

Execution of a GoSub or an On...GoSub statement defines a point of return. Another
GoSub or On...GoSub may be executed before a Return statement is executed. When a
Return is executed, control returns to the most recently defined point of return. Then
that point of return becomes undefined.

Note that the Return statement doesn’t return from the procedure. It is a run-time
error to attempt to execute a Return statement when there is no currently available
point of return within the procedure.

Note also that these statements differ from the GoTo and On...GoTo statements, which
transfer control without establishing a point of return.

GoSub and On...GoSub are nonstandard programming techniques with limited
usefulness. They enable running a group of statements by transferring control from
any number of other locations within the same procedure. Functionally the statements
behave as a subroutine, but the pseudo-subroutine is very limited: it can’t take
arguments, doesn’t establish a separate scope, and isn’t available from other
procedures, or other scripts. It is more common and useful to write the statements as
an ordinary sub.

The following example using On...GoSub runs one or the other of two simple
performance tests on pieces of the LotusScript language.

' By typing 1 or 2 into an input box, the user chooses
' whether to time 1000 iterations of a Do loop,
' or to count the number of Yields executed within one second.
' Using On...GoSub, the script branches to run one test or the other.
' A single Print statement reports the result.
Sub RunPerfTest
 Dim directTempV As Variant, directTest As Integer, i As Integer
 Dim startTime As Single, measure As Single, idPace As String
 SpecTest: directTempV = InputBox$(|Type 1 for iteration time,
 or 2 for # of yields:|)
 If Not IsNumeric(directTempV) Then Exit Sub
 directTest% = CInt(directTempV)
 If directTest% < 1 Or directTest% > 2 Then Beep : GoTo SpecTest
 i% = 0
 ' Branch on 1 or 2.
 On directTest% GoSub TimeCheck, ItersCheck
 ' Return here to print the performance-test result, and leave.
 Print idPace$ measure!
 Exit Sub

Chapter 7: Directing Traffic Within an Application 7-15

TimeCheck:
 startTime! = Timer()
 Do While i% <= 1000
 i% = i% + 1
 Loop
 measure! = Timer() - startTime!
 idPace$ = "Time in seconds for 1000 Do iterations: "
 Return
ItersCheck:
 startTime! = Timer()
 Do While Timer() < startTime! + 1
 Yield
 i% = i% + 1
 Loop
 measure! = i%
 idPace$ = "Number of Yields in 1 second: "
 Return
End Sub
Call RunPerfTest()

Exit statement
The Exit statement terminates execution of a procedure, or a Do, For, or ForAll
statement, before execution reaches the end of the procedure definition or the end of
the block statement.

The syntax is:

Exit exitType

exitType must be one of the keywords Do, For, ForAll, Function, Sub, or Property.

This illustration of Exit appeared already in the discussion of the If...Then...Else
statement earlier in the chapter:

' Compute the elapsed time to execute 1000 iterations
' of a simple Do loop.
' Time may vary, depending on the workstation.
Dim doCount As Integer, startTime As Single
startTime! = Timer()
doCount% = 0
Do
 ' Increment doCount% through 1000 iterations of the Do loop.
 doCount% = doCount% + 1
 If doCount% > 1000 Then Exit Do
Loop
' Come here upon exit from the Do loop.
Print Timer() - startTime! "seconds for 1000 iterations"
' Output:
' .109375 seconds for 1000 iterations

7-16 LotusScript Programmer’s Guide

When you use Exit with a Do, For, or ForAll statement, execution continues at the first
statement following the end of the block statement.

When you use Exit with a procedure, execution continues as it would following a
normal return from the procedure. The following example incorporates the Do
statement from the preceding example within a sub:

' Compute the elapsed time to execute a sub that runs
' 1000 iterations of a simple Do loop.
Public startTime As Single
Sub ElapsedTime
 Dim doCount As Integer
 doCount% = 0
 Do
 doCount% = doCount% + 1
 If doCount% >= 1000 Then Exit Sub
 Loop
' Because of the Exit Sub statement above, this Print statement
' will not be reached.
Print Timer() - startTime!, "seconds to run 1000 iterations"
End Sub
startTime! = Timer()
Call ElapsedTime()
Print Timer() - startTime! |seconds for sub call to run 1000
iterations|
' Output:
' .109375 seconds for sub call to run 1000 iterations

In this example, the Exit Sub statement terminates execution of the sub ElapsedTime
after doCount% reaches 1000. Execution continues with the Print statement following
the sub call. It is not necessary to terminate execution of the Do loop separately. The
Exit Sub statement transfers control from the Do loop out of the sub.

When execution continues after an Exit For statement has run, the count variable for
the For statement has its most recent value, just as when execution continues after an
ordinary termination of the For statement. When execution continues after an Exit
ForAll statement has run, the ForAll alias variable is undefined, just as when execution
continues after an ordinary termination of the ForAll statement.

Chapter 7: Directing Traffic Within an Application 7-17

Following execution of an Exit Function statement, the function returns a value to the
caller. As with a normal return, this is the last value assigned before the exit. If none
was assigned, the function return value is its initialized value: either 0, EMPTY, the
empty string (""), or NOTHING. For example:

Function TwoVerge(seqSeed As Integer) As Single
 ' Leave if the call argument is not a positive integer.
 ' The return value of TwoVerge is its initial value, 0.
 If seqSeed% < 1 Then Exit Function
 TwoVerge! = Sqr(seqSeed% + 1)
 Dim i As Integer
 For i% = 1 To seqSeed%
 ' TwoVerge computes and returns a value that must be
 ' 1 or greater, according to the following formula.
 TwoVerge! = Sqr(1 + (seqSeed% + 1 - i%) * TwoVerge!)
 Next i%
End Function

Here are calls to TwoVerge within Print statements that show the results:

Print "Seed:", -1, "Value:" TwoVerge(-1)
Print "Seed:", 20, "Value:" TwoVerge(20)
' Output:
' Seed: -1 Value: 0
' Seed: 20 Value: 1.999998

End statement
The End statement terminates execution of the current procedure, and also execution
of any procedure in the sequence of calls that called the current one. The syntax is:

End [returnCode]

The optional returnCode is an integer expression. The script where this statement
appears returns the value of this expression to the Lotus product that executed the
script. Refer to the product documentation to determine whether the product expects
a return value when the End statement is executed. If no return code is expected, do
not specify one with the End statement.

7-18 LotusScript Programmer’s Guide

The following example is a variation on the script in the preceding section that defined
and called the sub ElapsedTime.

' Compute the time to run some number of iterations of a For loop,
' and the time to execute the ElapsedTime sub.
Dim anInt As String
Public startSub As Single, startLoop As Single
Public counter As Long
Sub ElapsedTime
 ' If 0 or negative number of iterations is specified,
 ' print a message and end execution.
 If counter& <= 0 Then
 Print "Number of iterations must be >0"
 End ' End execution
 End If
 startLoop! = Timer()
 For doCount& = 1 To counter&
 Next
 Print Timer() - startLoop! "seconds to run" counter& "iterations"
End Sub
Sub DoTimer
 ' DoTimer calls ElapsedTime and reports the result.
 anInt$ = InputBox$("Enter a whole number:")
 counter& = CLng(anInt$)
 startSub! = Timer()
 Call ElapsedTime()
 ' This Print statement will not be executed if the End statement
 ' in sub ElapsedTime was executed.
 Print Timer() - startSub! "seconds for ElapsedTime sub call"
End Sub
Call DoTimer()
' Sample output, for 5000 iterations requested by user:
' .109375 seconds to run 5000 iterations
' .1601563 seconds for ElapsedTime sub call
' Output for -1000 iterations requested by user:
' Number of iterations must be >0

In this example, the sub DoTimer is called, which then calls the sub ElapsedTime.
When the End statement in ElapsedTime is executed, execution continues at the Print
statement following the DoTimer call. Compare this result with the result of the earlier
example containing ElapsedTime, which includes the Exit Sub statement.

Do statement
The Do statement executes a block of statements repeatedly while a given condition is
true, or until it becomes true. The block of statements executes infinitely often if the
condition for termination is never satisfied.

Chapter 7: Directing Traffic Within an Application 7-19

There are three kinds of Do statements. They differ in whether there is a condition or
in where the condition appears in the statement. There may be no condition at all, or it
may be specified at the beginning, or at the end, using either a While phrase or an
Until phrase. The syntax for these three forms is:

Do...Loop

This form of Do statement includes no condition.

Do While condition...Loop or Do Until condition...Loop

In this form, the condition is evaluated before each iteration.

Do...Loop While condition or Do...Loop Until condition

In this form, the condition is evaluated after each iteration.

The following example, which illustrates the first form of Do statement, appeared in
the first example in the section “Exit statement”:

doCount% = 0
Do
 doCount% = doCount% + 1
 If doCount% >= 1000 Then Exit Do
Loop

The Do loop in this example repeats until the condition in the If statement is satisfied.
A Do statement like this one, without a While phrase or an Until phrase, must contain
an Exit statement or an End statement, or some other statement that transfers control
out of the Do statement, such as GoTo. Otherwise the loop runs forever.

In the following example, each Do statement is equivalent to the Do statement in the
preceding example:

Dim doCount As Integer

' A Do While statement (condition at the beginning)
doCount% = 0
Do While doCount% < 1000
 doCount% = doCount% + 1
Loop

' A Do Until statement (condition at the beginning)
doCount% = 0
Do Until doCount% >= 1000
 doCount% = doCount% + 1
Loop

' A Do...Loop While statement (condition at the end)
doCount% = 0
Do
 doCount% = doCount% + 1
Loop While doCount% < 1000

7-20 LotusScript Programmer’s Guide

' A Do...Loop Until statement (condition at the end)
doCount% = 0
Do
 doCount% = doCount% + 1
Loop Until doCount% > 1000

The forms of the Do statement differ with regard to whether the condition is tested
before or after the first iteration of the loop. The condition in a Do While condition
statement or a Do Until condition statement is tested before the first iteration, whereas
the condition in a Do...Loop While condition statement or a Do...Loop Until condition
statement is not tested until after the first iteration. As a result:

The body of a Do While...Loop statement or a Do Until...Loop statement may not
be executed at all.

The body of a Do...Loop While statement or a Do...Loop Until statement is
executed at least once.

This example shows the difference:

Dim doCount As Integer

doCount% = 1
Do While doCount% < 1
 doCount% = doCount% + 1
Loop
Print "Do While...Loop counter reached" doCount%

doCount% = 1
Do
 doCount% = doCount% + 1
Loop While doCount% < 1
Print "Do...Loop While counter reached" doCount%
' Output:
' Do While...Loop counter reached 1
' Do...Loop While counter reached 2

The Do statement doesn’t establish a separate scope for variables within it. A variable
used in a While condition clause or an Until condition clause is like any other variable in
the script. If the variable has not been used previously, then its appearance in condition
declares it implicitly, and initializes it. For example:

' Suppose that the variable named doCount%
' has not appeared in a script prior to its appearance here.
Do While doCount% < 1
 doCount% = doCount% + 1
Loop
Print "Do While...Loop counter reached" doCount%
' Output:
' Do While...Loop counter reached 1

Chapter 7: Directing Traffic Within an Application 7-21

LotusScript declares doCount% implicitly and initializes it to 0, so the body of the loop
executes once. However, it’s risky programming practice to rely on this initialization.
You couldn’t rely on this behavior without knowing that either doCount% has not
appeared earlier during execution, or that the current value of doCount% is 0.

In the next example, a Do statement calculates successive terms of a sequence of
numbers that converges to a limit.

' This sub computes the quotient of each successive pair of terms
' of the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13,
' The sequence of quotients 2, 3/2, 5/3, ... is known to converge to
' the golden mean (1 + Sqr(5))/2.
' The sub argument deltaLim! is the tolerance.
' This example illustrates the Do...Loop Until form of the
' Do statement, with a condition that is recomputed on each iteration.
Sub FibiLim (deltaLim As Single)
 Dim r1 As Single, r2 As Single, r3 As Single
 Dim limTrue As Single
 Dim i As Integer
 ' Initialize the Fibonacci numbers and a counter.
 r1! = 1
 r2! = 1
 r3! = 1
 i% = 2
 Do
 NexTerm:
 i% = i% + 1
 r1! = r2!
 r2! = r3!
 ' r3! is the next Fibonacci number.
 r3! = r2! + r1!
 Print i%, "f(" & Str(i%) & "):" r3!, "quotient: " r3! / r2!
 ' On the first iteration, disable the standard exit condition.
 If i% = 3 GoTo NexTerm
 ' Iterate until successive quotients are close.
 ' The sequence is known to converge, so the iteration will end.
 Loop Until Abs(r3! / r2! - r2! / r1!) < deltaLim!
 limTrue! = (1 + Sqr (5)) / 2
 ' When done, show the closeness obtained and the actual limit.
 Print "Tolerance:" deltaLim!
 Print "Difference:" CSng(Abs(r3! / r2! - limTrue!)), _
 "(Actual limit:" limTrue!")"
End Sub

7-22 LotusScript Programmer’s Guide

' Call FibiLim with a tolerance argument.
Call FibiLim(.005)
' Output:
' 3 f(3): 2 quotient: 2
' 4 f(4): 3 quotient: 1.5
' 5 f(5): 5 quotient: 1.66666666666667
' 6 f(6): 8 quotient: 1.6
' 7 f(7): 13 quotient: 1.625
' 8 f(8): 21 quotient: 1.61538461538462
' 9 f(9): 34 quotient: 1.61904761904762
' Tolerance: .005 Difference: 1.013614E-03 (Actual limit:
1.618034)

While statement
The While statement executes a block of statements repeatedly while a condition is
true. The syntax is:

While condition

statements

Wend

LotusScript evaluates the condition of a While statement before each repetition of the
statement body. As soon as the condition is false, control passes to the statement
following Wend.

No statement outside the While statement body should transfer control into it,
bypassing the evaluation of condition; the results are unpredictable.

The While statement is a historical artifact. It is equivalent to the Do While...Loop
statement. You should use the Do While...Loop statement in preference to the While
statement.

For statement
The For statement executes a block of statements a specified number of times. The
syntax is:

For countVar = first To last [Step increment]

 [statements]

Next [countVar [, countVar]...]

Chapter 7: Directing Traffic Within an Application 7-23

The simplest form of a For statement does not use the Step or Next optional items in
the syntax, as the following example shows.

Dim power2 As Integer
For iV = 1 To 15
 power2 = 2 ^ iV - 1
 Print power2% ;
Next
' Output:
' 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767

The first line of the For statement in the previous example is equivalent to the
following:

For iV = 1 To 15 Step 1

That is, if the phrase Step increment is omitted from the statement, the default value of
increment is 1.

Note that the body of the For statement can be empty: there need be no statements at
all between For and Next.

Variables in the control expressions: their data type and declaration
If any variables appear in the control expressions first, last, or increment, LotusScript
uses their current values. If they were not previously declared or used, LotusScript
implicitly declares them as Variants and initializes them to EMPTY. You must be
certain that any variables in these expressions have been declared before executing the
For statement.

LotusScript initializes the counter variable to the value of first when the For statement
is entered. If countVar was not previously declared or used, LotusScript declares it as a
Variant. (Note that if your script includes the Option Declare statement, then countVar
must be declared before you use it in a For statement.)

For example:

' If the variable iV was previously declared or used,
' this For statement declares it as a Variant.
' Its value after the For statement completes execution is the
' last value assigned to it during the For statement execution (16).
For iV = 1 To 15
Next
Print TypeName(iV), iV
iV = "abc"
Print TypeName(iV), iV
' Output:
' INTEGER 16
' STRING abc

7-24 LotusScript Programmer’s Guide

In the following example, a compiler error results when you attempt to use 2 ^ 15 as
the limiting value for an Integer counter variable in a For statement. This is because
the maximum Integer value in LotusScript is (2 ^ 15) - 1.

Dim i As Integer
For i% = 1 To 2 ^ 15
Next
' Output:
' Error 6: Overflow

When the counter variable is a Variant, LotusScript converts its value to the
appropriate data type when it executes the For statement. For example:

For iV = 1 To 2 ^ 15
Next
Print TypeName(iV), iV
' Output:
' LONG 32769

This example is similar:

' The Variant kV has a Double value in every iteration of this loop,
' because the For statement first assigns it the Double value 1.0
' and thereafter adds 1 to the value in each iteration.
For kV = 1.0 To 3
Next
Print TypeName(kV), kV
' Output:
' DOUBLE 4

In this example, the value of kV during the second iteration of For is the Double
value 2.1:

' This loop iterates only twice because the third value of kV is 3.2,
' which is larger than the limiting value, 3.
For kV = 1 To 3 Step 1.1
 Print TypeName(kV), kV
Next
' Output:
' INTEGER 1
' DOUBLE 2.1

Chapter 7: Directing Traffic Within an Application 7-25

The LotusScript data type conversion rules apply to the counter variable. For example:

' In this instance, the Step value, 1.1, is rounded to the Integer
' value 1 each time it is used to increment k%, because k% is declared
' as an Integer variable.
Dim k As Integer
For k% = 1 To 3 Step 1.1
 Print TypeName(k%), k%
Next
' Output:
' INTEGER 1
' INTEGER 2
' INTEGER 3

Nested For statements
The following example illustrates the usefulness of nested For statements. The
example computes and prints the binomial coefficients (denoted mathematically
b(j; k)) for every integer k from 1 to n, for any positive integer n. The algorithm
used is the Pascal triangle method, by which b(j; k) is calculated as the
sum b(j - 1; k - 1) + b(j - 1; k).

' In this example, three separate For statements are nested
' inside an outer For statement.

Sub CoArray(n As Integer)
 Dim i As Integer, j As Integer, k As Integer
 Dim coHold() As Double, coCalc() As Double
 ' Initialize arrays coHold and coCalc to 0.
 ' Alternate elements within each of these arrays will always be 0.
 ' The coefficients are stored in coCalc by addition from coHold.
 ReDim coHold(2 * n%)
 ReDim coCalc(2 * n% + 1)

 coHold(n%) = 1
 Print "Binomial coefficients for the integers up to:" n%

 ' Each iteration of this outer For statement "For j% ..."
 ' computes a line of coefficients.
 For j% = 0 To n%
 If j% > 0 Then
 ' The statement "For k%..." creates an array of coefficients
 ' in the middle of array coCalc. Alternate elements in this
 ' part of coCalc remain 0, and the ends of coCalc remain 0.
 For k% = n% - j% + 1 To n% + j% - 1
 coCalc(k%) = coHold(k% - 1) + coHold(k% + 1)
 Next k%
 End If

7-26 LotusScript Programmer’s Guide

 ' Set the 0-th and j-th coefficients to 1.
 coCalc(n% - j%) = 1
 coCalc(n% + j%) = 1

 Print
 Print "Coefficients for j = "j%":";
 ' The statement "For k% ..." writes the new coefficients
 ' back into coHold to be used the next time around.
 For k% = n% - j% To n% + j%
 coHold(k%) = coCalc(k%)
 Next k%
 ' This For statement prints the line of coefficients for
 ' this value of j%. Every 2nd element of coCalc is 0.
 ' Don't print 0's.
 For k% = 0 To 2 * n%
 If coCalc(k%) > 0 Then Print coCalc(k%);
 Next k%
 Next j%
End Sub

Call CoArray(5)

' Output:
' Binomial coefficients for the integers up to: 5
' Coefficients for 0 : 1
' Coefficients for 1 : 1 1
' Coefficients for 2 : 1 2 1
' Coefficients for 3 : 1 3 3 1
' Coefficients for 4 : 1 4 6 4 1
' Coefficients for 5 : 1 5 10 10 5 1

You can call the sub CoArray with larger argument values to obtain other sets of
binomial coefficients.

Some other features of this algorithm are worth mentioning:

To print the coefficients only for n, rather than for every integer up to n, simply
move the final nested For statement (For k% = 0 To 2 * n...) outside of the current
outer For statement (For j% = 0 To n...), after the phrase Next j%.

For small values of n, the algorithm is the easiest way of computing and writing
out all of these binomical coefficients by hand in a symmetric triangular array,
where the longest, bottom row contains the coefficients for n itself. Each coefficient
is the sum of two coefficients already computed: its “northwest” and “northeast”
neighbors in the array. For n = 15, say, the left half of the array can be produced by
hand addition in a minute or so; the right half is its mirror image.

Chapter 7: Directing Traffic Within an Application 7-27

If the factorials of 1 through n are known, they can be used to compute the
binomial coefficients. If a function to compute the factorial is called FactNum, then
a binomial coefficient b(n; k) can be expressed as

FactNum(n%) / (FactNum(k%) * FactNum(n% - k%))

This is a more conventional way of computing the coefficient. You may want to
write a routine using FactNum to compute and print the same set of coefficients
generated by the sub CoArray in the example above. FactNum itself can be written
as a function using a For statement:

Function FactNum(n As Integer) As Double
 FactNum# = 1
 For i% = 1 To n%
 FactNum# = FactNum# * i%
 Next i%
End Function

Each method has its advantages:

The formula using FactNum is the definition of the binomial coefficient, so that
routine may be easier to read and modify.

The implementation by CoArray is fast, and involves no calls to other routines.
Also, CoArray can take larger arguments than FactNum, since the largest
number CoArray computes is a coefficient, rather than the factorial of n.

The definition of the sub CoArray ends with two Next statements that complete two
For statements. You can rewrite the Next statements in this way:

 Next k%
Next j%

That is, k% and j% are optional in these statements. The following is also equivalent:

Next k%, j%

When you use this construction, you must order the counter variables correctly: from
the inside For statement to the outside.

Common errors in For statements
The following situations represent some straightforward logic errors in writing For
statements, and illustrate how LotusScript responds to them.

Two For statements can be nested, but they cannot overlap partially. For example:

For i% = 1 To 3
 For j% = 1 To 2
Next i%
 Next j%
' Output:
' Error 53: Name does not match FOR count variable: I

7-28 LotusScript Programmer’s Guide

A For statement cannot overlap with any other block statement. For example:

For i% = 1 To 3
 Do
 Print "test"
 Next
Loop
' Output:
' Error 1: Unexpected: NEXT; Expected: LOOP

Within a For statement, its counter variable cannot be used as the counter variable
of another For statement. For example:

For i% = 1 To 3
 For i% = 1 To 3
 Next
Next
' Output:
' Error 52: FOR count variable already in use: I

ForAll statement
This statement executes a block of statements repeatedly, once for each element of an
array or a list. The syntax is:

ForAll refVar In container

statements

End ForAll

container names an existing array or list.

After the statements in the body of the ForAll statement are executed for the last
element in container, execution continues with the next statement following the ForAll
statement. However, execution may continue elsewhere if control passes out of the
body of the ForAll statement during execution, via a GoTo, GoSub, Exit, or End
statement.

On successive iterations of statements, the reference variable, refVar, refers in turn to
each element in container. The name refVar is declared by its appearance in the ForAll
statement. It is not a synonym for the container name itself. Rather, it is an alias for
each individual element of the container in turn. On each successive iteration, its data
type is the data type of the element of the container.

Chapter 7: Directing Traffic Within an Application 7-29

For example:

Dim persStats List As String ' Declare list of type String.
persStats("Name") = "Ian" ' Assign list elements.
persStats("Age") = "36"
persStats("Home state") = "MD"
ForAll idAttrib In persStats ' For each item in persStats,
 Print ListTag(idAttrib)": " idAttrib ' print its tag and value.
End ForAll
' Output:
' Name: Ian
' Age: 36
' Home state: MD

Here is an example of a ForAll statement where the container is an array instead of a
list:

Dim numberId(2) As Integer
For i% = 0 To 2
 numberId(i%) = i% + 1
Next
ForAll p2 In numberId
 Print TypeName(p2) p2 * p2 ' Print the type and the square of
 ' the number in each element.
End ForAll
' Output:
' INTEGER 1
' INTEGER 4
' INTEGER 9

If an array or a list has no elements, then a ForAll statement with that array or list for a
container variable has no effect. For example:

Dim testNone() As Integer
Print "Before ";
ForAll iTest In testNone
 Print iTest, "In ForAll ";
End ForAll
Print "After"
' Output:
' Before After

7-30 LotusScript Programmer’s Guide

Scope of the reference variable
It is illegal to refer to the reference variable outside the ForAll statement. For example:

ForAll p2 In numberId
 Print p2 * p2 ;
End ForAll
Print
Print TypeName(p2)
' Output:
' 1 4 9
' Error 115: Illegal reference to FORALL alias variable: P2

It is also illegal to declare a reference variable outside a ForAll statement. For example:

Dim p2 As Integer
ForAll p2 In numberId
 Print p2 * p2 ;
End ForAll
' Output:
' Error 164: FORALL alias variable was previously declared: P2

You can, however, reuse a reference variable from one ForAll statement as the
reference variable in another ForAll statement. The container variable in the second
ForAll statement must have the same data type as the container variable in the first
ForAll statement. The LotusScript compiler generates an error if the data types are
different. (The kind of container — array or list — doesn't matter.)

For example:

ForAll p2 In numberId
 Print p2 * p2 ;
End ForAll
Print

Dim numShiftV(3) As Variant
ForAll p2 In numShiftV
 p2 = 1
End ForAll
' Output:
' 1 4 9
' Error 114: FORALL alias variable is not of same data type: P2

In the example, p2 was implicitly declared as an Integer variable by the statement:

ForAll p2 In numberId

Therefore it cannot be redeclared as a Variant variable, as this statement tries to do:

ForAll p2 in numShiftV

Changing the declared data type of numShiftV to Integer would make the second use
of p2 legal.

Chapter 7: Directing Traffic Within an Application 7-31

Modifying container variable elements
The following example illustrates how a ForAll statement references the current value
of each element in the container array or list. In the example, statements within the
ForAll statement change the current values of the two elements in the container array
iHold. The new values are used by subsequent statements in the first iteration of the
ForAll statements, and also when the ForAll statements are executed for the next
element in iHold.

Dim iHold(1) As Integer
iHold(0) = 50
iHold(1) = 100
ForAll iElem In iHold
 ' Print the values of iElem and iHold(1)
 ' upon each entry into ForAll.
 Print
 Print "iElem and iHold(1) IN:" iElem iHold(1)
 ' Add 2 to the current element. The current element is iHold(0) the
 ' first time through ForAll, and iHold(1) the second time through.
 iElem = iElem + 2
 ' Increment the value of iHold(1) by 5 (both trips through).
 iHold(1) = iHold(1) + 5
 ' Print the current values of iElem and iHold(1)
 ' upon each exit from ForAll.
 Print "iElem and iHold(1) OUT:" iElem iHold(1)
End ForAll
' Output:

' iElem and iHold(1) IN: 50 100
' iElem and iHold(1) OUT: 52 105

' iElem and iHold(1) IN: 105 105
' iElem and iHold(1) OUT: 112 112

To compare how a With statement can perform a similar task, see the description of
With in Chapter 5, “User-Defined Data Types and Classes.”

In the following example, the value of an element of the container array cHold is a
reference to an object of the class refClass. Initially the two elements of cHold contain
different object references. On the first iteration of the ForAll statement, the value of
the first element is reset to the value of the second; thereafter, the elements refer to the
same object.

7-32 LotusScript Programmer’s Guide

Option Base 1
Class refClass
 Public cVar As Integer
End Class
Dim cHold(2) As refClass
Set cHold(1) = New refClass
Set cHold(2) = New refClass
' The output from the following Print statement
' shows that cHold(1) and cHold(2) hold different objects references.
If cHold(1) Is cHold(2) _
 Then Print "Same object" Else Print "Different objects"
cHold(1).cVar% = 100
cHold(2).cVar% = 200
ForAll cElem In cHold
 Print
 Print cElem.cVar%
 Set cHold(1) = cHold(2)
 ' Now cHold(1) holds the same reference as cHold(2), so
 ' cElem refers to that object in the following statements
 ' (on both trips through ForAll).
 Print cElem.cVar%
 If cHold(1) Is cHold(2) _
 Then Print "Same object" Else Print "Different objects"
End ForAll
' Output:
' Different objects
'
' 100
' 200
' Same object
'
' 200
' 200
' Same object

The two examples above change the contents of the container array for the ForAll
statement, but not the structure. Since the container is the control structure for a
ForAll statement, it's a very questionable programming tactic to change the structure.
Although you can use the Erase statement on the container or its elements; or use the
ReDim statement on an array, this is not recommended. The results are unpredictable.

Similarly, it is possible to transfer control from outside a ForAll statement to a labeled
statement inside. But this is also not recommended, since by doing so you bypass the
built-in initialization of the ForAll reference variable that occurs when the ForAll
statement begins execution for a particular element.

Chapter 7: Directing Traffic Within an Application 7-33

Element access order
As shown in the first example in this section, a ForAll statement for a list container
accesses the list elements in the same order as they are maintained in the list. A ForAll
statement for an array accesses the array elements in the order in which LotusScript
stores them. For a one-dimensional array arrA, this is arrA(0), arrA(1), arrA(2), ... (if 0
is the lowest subscript for arrA). LotusScript stores an array with more dimensions in
first-fastest order (the first subscript in the array subscript list varies fastest). A ForAll
statement accesses the array elements in the same order. For example:

Option Base 1g5

Dim eyeJay(2,3) As String
' Access the elements of eyeJay in "last fastest" order
' for assignment and printing.
For i% = 1 To 2
 For j% = 1 To 3
 ' In eyeJay(i,j), store the string "(i,j)".
 eyeJay(i%, j%) = "(" & Str(i%) & "," & Str(j%) & ")"
 ' Print the element value.
 Print eyeJay(i%, j%),
Next j%, i%
Print
' Now print the elements of eyeJay one at a time in the same order
' as the ForAll statement accesses them.
' This order is first fastest, the storage order for any array.
Print
ForAll elem In eyeJay
 Print elem,
End ForAll
' Output:
' (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3)
' (1, 1) (2, 1) (1, 2) (2, 2) (1, 3) (2, 3)

7-34 LotusScript Programmer’s Guide

Chapter 8
Error Processing

Two kinds of errors can occur in a LotusScript application: compile-time errors and
run-time errors.

Compile-time errors are errors that are found and reported when the compiler
attempts to compile a script. Common compile-time errors are errors in the syntax of a
statement, or errors in specifying the meaning of names: for example, misstating the
bounds of an array variable.

The compiler reports an error, together with an error message and a link to online
Help, which explains how to correct the error. You need to correct any such error by
revising the script source statements that generated the error before the script can
compile and run.

Run-time errors occur when LotusScript attempts to execute the script. A run-time
error represents a condition that exists when the script is run, but could not be
predicted at compile time. Examples of run-time errors are attempting to open a file
that doesn't exist, or attempting to divide a number by a variable whose value is
zero (0).

Run-time errors prevent a script from running to normal completion. When a run-time
error occurs, script execution ends unless your script includes statements to handle the
error.

LotusScript anticipates many run-time errors, and identifies each one with a number, a
name, and a standard message that describes it. You can also create your own errors
and associate a number and a message with each one.

This chapter covers the following topics in run-time error processing:

Managing run-time errors

Using the On Error and Resume statements

Using error-handling routines outside procedures

Using the informational functions

8-1

Managing Run-Time Errors
This section summarizes statements and functions you use in your application to
manage run-time errors. It also summarizes how LotusScript handles errors,
depending on how you design your application.

The On Error and Resume statements
You include On Error and Resume statements in a script to explicitly manage the flow
of control when an error occurs.

The On Error statement specifies how to handle an error.

The Resume statement specifies where to resume script execution after handling
an error.

How the On Error and Resume statements work together is described in two later
sections of this chapter. For a summary of these statements, see “How errors are
handled.” For details and examples, see “Using the On Error and Resume statements.”

Informational functions: Err, Erl, Error, and Error$
The functions Err, Erl, Error, and Error$ describe the current error, if there is one.
LotusScript assigns a value to each of these functions when an error occurs.

The Err function returns the LotusScript error number for the current error, or the
number you specify with the Err statement.

The Erl function returns the number of the line in which the current error
occurred.

The Error and Error$ functions return the error message for the current error, or
the message for the error number you specify with the Err statement.

These functions are illustrated in passing throughout this chapter. For examples that
specifically illustrate these functions, see “Using the informational functions” at the
end of this chapter.

Managing the error number and message: the Err and Error statements
The Err statement sets the error number. The Error statement generates an error, and
optionally specifies an error message for it.

The Err statement
The Err statement corrresponds to the Err function, which returns the current error
number.

The Err statement has the form:

Err = errNumber

8-2 LotusScript Programmer’s Guide

The error number can be set either automatically by LotusScript, when an error
occurs, or explicitly by this statement in a script. Whenever the error number is set,
LotusScript automatically sets the value of the Error function to the error message
associated with that error number. If the error number is set to 0, LotusScript sets the
value of the Error function to its initial value, the empty string ("").

Note that the Err statement does not create an error as the Error statement does (see
below). It only resets the error number (and therefore the value also of the Error
function). So the error number Err may be nonzero while there is no current error.

The Error statement
The Error statement creates an error, and optionally specifies an error message
associated with that error. The statement has the form:

Error = errNumber [, msgExpr]

If you do not include the optional msgExpr string in the statement, it simply creates an
error when the script runs. If errNumber is the number of an error that is already
defined, then the effect of this statement is the same as if that error occurred when the
script executed. For example, LotusScript defines a division-by-zero error with the
error number 11. So the following statement has the same effect as an actual error
occurring when LotusScript executes a statement that attempts to divide by zero:

Error = 11

If you include msgExpr in the Error statement, you specify the error message to be
reported when the error occurs and no error handling for the error is in effect.

How errors are handled
At any time during execution, there is either a current error, or no error at all. The
current error is a run-time error that has occurred, but has not yet been handled. For
the error to be handled in the current procedure, the procedure must include an On
Error statement that refers to the error, and that has already been executed.

Using On Error GoTo label
When the most recently executed On Error statement for the current error has the
form On Error GoTo label, LotusScript continues execution at the labeled statement.
The statement begins an error-handling routine for the error. The error-handling
routine may consist of any statements, beginning with the statement executed at the
label and continuing through the next Resume, Exit Sub, Exit Function, Exit Property,
or End statement encountered at run time. The error is considered handled when one
of the latter statements is executed.

If the statement that ends the error-handling routine is a Resume statement, then the
values of Err, Erl, and Error are reset to their initial values: 0, 0, and the empty string
(""), respectively. If the statement is Exit Sub, Exit Function, or Exit Property, then
LotusScript does not reset the values of the Err, Erl, and Error functions.

Chapter 8: Error Processing 8-3

Using On Error Resume Next
When the most recently executed On Error statement for the current error has the
form On Error Resume Next, LotusScript resumes execution with the statement
following the statement where the error occurred. When execution resumes in this
way, the error is considered handled. LotusScript does not reset the values of the Err,
Erl, and Error functions that were set when the error occurred.

Handling an error outside a procedure
If the current procedure contains no On Error Resume Next statement or On Error
Goto label statement that refers to the error, or if such a statement was not executed
during the current call to the procedure, LotusScript determines whether one of these
statements was executed in the procedure that called this procedure, if any. If so, the
error is handled as specified by that statement, as described above. If not, the search
for an applicable On Error statement continues in the procedure that called that
procedure, and so on. If no associated On Error statement was executed in any calling
procedure, then execution ends and the associated error message is displayed.

An On Error statement of the special form On Error GoTo 0 does not handle any error
that it refers to. It says explicitly that any error it refers to is not handled in the current
procedure. When such an error occurs, LotusScript searches upward through the
chain of calling procedures for an On Error statement that specifies how to handle the
error.

Resetting the error number
The value of the function Err persists across scripts. Completing execution of a script
does not automatically reset this function’s value to 0. The value of Err is reset to 0
only by an Err statement or a Resume statement.

Errors within error-handling routines
If an error occurs during execution of an error-handling routine, that error becomes
the current error. Execution ends and the associated error message is displayed.

Using the On Error and Resume Statements
To handle a run-time error, you can write an error-handling routine, the set of
statements that are executed when the error occurs. Ordinarily, an error-handling
routine performs some special action related to the error, and then execution resumes
and continues normally.

You can specify that an error-handling routine handles only a particular error in the
script, or any run-time error at all in the script. You can write several error-handling
routines, each to handle a particular error, and also a general error-handling routine to
handle all the remaining possible errors.

8-4 LotusScript Programmer’s Guide

The following extended examples show how a run-time error can arise in a script, and
how you can modify a script to either avoid or handle the error. The straightforward
error processing illustrated here uses the On Error and Resume statements, which you
typically use to process errors.

Suppose that your script includes a sub named GetLine to retrieve some values from
the first line of a file whose name the user specifies. For example:

Sub GetLine
 Dim number1 As Integer, number2 As Integer, number3 As Integer
 Dim fileName As String
 ' Prompt the user to enter a file name, and assign the result.
 fileName$ = InputBox$("Enter a file name: ")
 Open fileName$ For Input As #1 ' This is line 6.
 Input #1, number1%, number2%, number3%
 Print number1%, number2%, number3% ' Print the input values.
 Close #1
End Sub

When the sub GetLine runs, an error occurs at the Open statement if the user enters
the name of a nonexistent file when prompted by the InputBox$ function. Because the
script does not contain statements to handle the error, LotusScript ends execution of
the script and prints an error message:

Call GetLine()
' Output:
' Fail: RunTime Error 101 Unable to open file at Line 6

In the following example, the script just shown is modified to include an On Error
statement to handle a file-open error when it occurs. If the Open statement fails,
LotusScript prints some identifying information about the error, and requests a new
file name from the user, rather than ending script execution and printing an error
message.

Sub GetLine
 Dim number1 As Integer, number2 As Integer, number3 As Integer
 Dim fileName As String
 ' Designate an error-handling routine to handle an error.
 On Error GoTo NoExist
GetName:
 fileName$ = InputBox$("Enter a file name: ")
 Open fileName$ For Input As #1 ' This is line 8.
 Input #1, number1%, number2%, number3%
 Print number1%, number2%, number3%
 Close #1
 ' Done. Exit from the sub GetLine. (Don't continue on to the
 ' error-handling routine at the label NoExist.)
 Exit Sub

Chapter 8: Error Processing 8-5

NoExist:
 ' Come here when any error occurs.
 ' Print the values of built-in functions that give information
 ' about the error: an error message, the error number,
 ' and the line number in the script where the error occurred.
 Print Error(), Err(), Erl()
 ' Resume execution at the label GetName.
 Resume GetName
End Sub
Call GetLine()
' The user twice enters a file name that doesn't exist, and then a
' valid file name. The values read in from the file are 11, 22, and 0.
' Output:
' Unable to open file 101 8
' Unable to open file 101 8
' 11 22 0

Error-number constants
The On Error statement in the preceding example designates an error-handling routine
to be invoked when any run-time error occurs. However, the error-handling routine
was intended only to handle a file-open failure. Therefore, the On Error statement
specifies that particular error. The error-handling routine is invoked when that error
occurs, but script execution ends when any other error occurs.

A file-open failure is one of the common run-time errors for which LotusScript defines
an error message, an error number, and a constant whose value is that number. The
constants and their values are defined by Const statements in the file LSERR.LSS.
When you include this file in your script, using a %Include directive, you can use the
constants to designate errors in your script. The constants themselves are mnemonic
names for the errors. For example, the constant specifying the file-open failure is
ErrOpenFailed. The file LSERR.LSS itself contains all the run-time errors defined by
LotusScript. Since the file specifies a number for each constant, you can use the error
number in an On Error statement. This is not advisable, however, because the number
is less meaningful than the name of the constant.

You can modify the previous example to include LSERR.LSS at the beginning of the
script, and replace the On Error statement by this line:

On Error ErrOpenFailed GoTo NoExist

When the modified script runs, the error-handling routine at the label NoExist is
invoked when the error ErrOpenFailed occurs. Script execution ends when any other
error occurs. For example, script execution ends if the first three values in the file do
not have the data type Integer, because the Input # statement generates an error.

8-6 LotusScript Programmer’s Guide

Multiple On Error statements

Handling individual errors
An On Error statement can refer to only one error-handling routine. To specify that
you want different errors handled differently, you need to include two or more On
Error statements in your script.

For example, you might modify the example in “Using the On Error and Resume
statements,” earlier in the chapter, to include a Print statement that can generate a
division-by-zero error. To handle a division-by-zero error, you could include an
additional On Error statement that specifies this error and designates an
error-handling routine that responds appropriately to the error. The routine begins at
the DivZero label. It includes an InputBox$ function call that prompts the user to type
a replacement value for the 0 (zero) that was read from the opened file. The additional
On Error statement is

 On Error ErrDivisionByZero GoTo DivZero

The error-handling routine looks like this:

DivZero:
 number3% = InputBox$("Number3 is 0. Enter a new value: ")
 ' Resume execution with the statement that caused
 ' the error ErrDivisionByZero.
 Resume

When the above statements are added, the script manages file-open failure errors and
division-by-zero errors. However, any other error terminates script execution. To
ensure that all other errors are handled without terminating script execution, include
an On Error statement that doesn’t specify a particular error.

With all of these changes, the resulting script looks like this:

%Include "LSERR.LSS"
Sub GetLine
 Dim number1 As Integer, number2 As Integer, number3 As Integer
 Dim fileName As String
 ' The error-handling routine at label Leave is for
 ' all errors except the two individual errors
 ' specified in the second and third On Error statements.
 ' Each has a specific error-handling routine designated.
 On Error GoTo Leave
 On Error ErrOpenFailed GoTo NoExist
 On Error ErrDivisionByZero GoTo DivZero
GetName:
 fileName$ = InputBox$("Enter a file name: ")
 Open fileName$ For Input As #1
 Input #1, number1%, number2%, number3%
 Print number1%, number2%, number3%

Chapter 8: Error Processing 8-7

' The next statement causes a division-by-zero error if number3 is 0.
 Print (number1% + number2%) / number3%
 Close #1
 Exit Sub
NoExist:
 Print Error(), Err(), Erl()
 Resume GetName
DivZero:
 number3% = InputBox("Number3 is 0. Enter a new value: ")
 Resume
Leave:
 ' The following message is general, because different errors
 ' may have occurred.
 MessageBox("Cannot complete operation.")
 Exit Sub
End Sub

The following example of a call to GetLine shows how the modified sub works:

Call GetLine()
' The user enters a valid file name, and the values read in
' from the file are 11, 22, and 0.
' Output:
' 11 22 0
' The value 0 causes a division-by-zero error.
' The user then enters the value 2 into the input box specified
' in the error-handling routine beginning at DivZero.
' Execution resumes at the Print statement that generated the error.
' Output:
' 16.5

For all errors other than file-open failure errors and division-by-zero errors, the
error-handling routine at Leave displays a message in a message box, and returns
from the sub GetLine.

However, suppose that the user enters the value 99999, instead of the value 2, into the
input box in the error-handling routine at DivZero. The result is an overflow error,
because 99999 is larger than the maximum legal Integer value for the variable
number3%. This error will not be handled, because it occurs within the error-handling
routine at DivZero. LotusScript ends execution whenever an error occurs within an
error-handling routine.

8-8 LotusScript Programmer’s Guide

Ordering of On Error statements
The order of On Error statements is important. Only one error-handling routine (or
none) is in effect at any given time for any particular error. The one in effect is the
routine specified in the most recently executed On Error statement that applies to that
error. Changing the order of the On Error statements can change the processing at run
time. For example, suppose the order of the three On Error statements at the
beginning of the preceding example is changed to this:

' Two routines are designated to handle individual errors.
On Error ErrOpenFailed GoTo NoExist
On Error ErrDivisionByZero GoTo DivZero
' The Leave routine is intended to handle all other errors.
On Error GoTo Leave

This sequence of three statements is a programming mistake. After these three
statements execute, all errors are handled by the error-handling routine beginning at
the label Leave, because the statement On Error GoTo Leave refers to all errors. The
routine named Leave overrides the routines established for ErrOpenFailed and for
ErrDivisionByZero that were specified in the preceding two On Error statements.

On Error Resume Next
Instead of specifying an error-handling routine that executes when an error occurs,
you can specify that program execution simply continues with the next statement after
the statement that generates the error. This is done by including the statement On
Error Resume Next, as in the following example:

Sub TestHand
 Dim num As Single
 On Error Resume Next
 num! = 1
 ' The next statement generates an error.
 Print num! / 0
 Print "Continuing after division-by-zero error."
End Sub
Call TestHand()
' Output:
' Continuing after division-by-zero error.

Error-Handling Routines Outside Procedures
When an On Error statement specifies the label where the error-handling routine
begins, that labeled statement must be in the same procedure as the On Error
statement. This is because a GoTo statement cannot transfer control to a labeled
statement outside the procedure where it occurs. The compiler verifies that the labeled
statement is present in the same procedure, and generates a compile-time error if it is
not.

Chapter 8: Error Processing 8-9

However, LotusScript need not handle an error in the procedure where it occurs. The
error can be handled in the procedure that called the current procedure. If the current
procedure doesn’t handle the error, LotusScript returns control to the calling
procedure and seeks an error-handling routine there for the error. If the caller doesn’t
handle the error, LotusScript looks at the caller’s caller, and so on. If no applicable
error-handling routine is found by this process, execution ends, and the error message
for the error is generated. For example:

' The sub TestHand generates a division-by-zero error.
' Since TestHand doesn't specify how to handle the error, control
' returns to the calling procedure SuperHand when the error occurs.
' SuperHand contains an error-handling routine for division by zero.
' Control passes to that routine, which prints a message and exits
' from SuperHand.
Sub TestHand
 Dim num As Single
 num! = 1
 Print num! / 0
End Sub
Sub SuperHand
 On Error GoTo DivZero
 Call TestHand()
 Exit Sub
DivZero:
 Print "Continuing after calling sub TestHand."
 Exit Sub
End Sub
Call SuperHand()
' Output:
' Continuing after calling sub TestHand.

You can use a special form of the On Error statement to state explicitly that a specified
error not be handled in the current procedure. The statement has the form:

On Error errNumber GoTo 0

This says that the error numbered errNumber is not handled in the current procedure.
For example, the result of the preceding example is unchanged if the sub TestHand is
modified as follows:

Sub TestHand
 Dim num As Single
 On Error ErrDivisionByZero GoTo 0
 num! = 1
 Print num! / 0
End Sub

You can also use a statement in the following form to specify that no error be handled
in the current procedure. This statement makes it explicit that the procedure handles
no errors, so your error-handling logic is clearer.

8-10 LotusScript Programmer’s Guide

On Error GoTo 0

Like any On Error statement, the effect of this statement can be overridden, for any
particular error, by a subsequent On Error statement that designates different
handling for that error. For example:

' This pair of On Error statements specifies that
' division-by-zero errors are handled by an error-handling routine
' at the label DivZero; and no other errors are
' handled in the current procedure (an error-handling routine
' for other errors is sought in the procedure's caller).
On Error GoTo 0
On Error ErrDivisionByZero GoTo DivZero

Resuming execution in a calling procedure
When an error is handled that occurred in a lower-level procedure, On Error Resume
Next has a special meaning. LotusScript considers the procedure call to be the
statement that caused the error; so “Next” refers to the next statement in the calling
procedure. For example:

Sub TestHand
 Dim num As Single
 num! = 1
 Print num! / 0
End Sub
Sub SuperHand
 On Error Resume Next
 Call TestHand()
 ' When control returns to SuperHand upon an error in TestHand,
 ' execution continues at this Print statement.
 Print "Continuing after calling sub TestHand."
 Exit Sub
End Sub
Call SuperHand()
' Output:
' Continuing after calling sub TestHand.

Similarly, when the statement Resume Next appears within an error-handling routine
for an error that occurred in a lower-level procedure, “Next” refers to the next
statement in the calling procedure.

Chapter 8: Error Processing 8-11

The statement Resume 0, or simply Resume, in an error-handling routine means to call
again the procedure that produced the error, as the following example shows:

' The sub SuperHand calls the sub TestHand with an argument of 0,
' which produces an error. The error is handled by an error-handling
' routine in the caller, the sub SuperHand.
' Handling the error includes resetting the call argument to 1,
' and then calling TestHand with this argument. On the second call
' no error occurs.

Sub TestHand(num As Integer)
 Dim num2 As Single
 If num <> 0 GoTo ProcPos
 Print "Call argument to sub TestHand is 0; will generate error."
 ' There's no error-handling routine in sub TestHand for
 ' division-by-zero, so control returns to the calling sub
 ' SuperHand when the next statement is executed.
 num2! = num% / 0
 ' This Print statement is not executed at all.
 Print "Continue here after division-by-zero error?"
 Exit Sub
 ' Come here if call argument is nonzero.
ProcPos:
 Print "Call argument to sub TestHand is nonzero (no error)."
 Exit Sub
End Sub
Sub SuperHand
 Dim numIn As Integer
 ' A division-by-zero error not handled in sub TestHand
 ' is handled by the error-handling routine at DivZero.
 On Error GoTo DivZero
 Call TestHand(numIn%)
 Exit Sub
DivZero:
 Print "Handling division-by-zero error."
 numIn% = 1
 ' Re-execute the statement that caused the error being handled.
 ' This will be the statement Call TestHand(numIn%) above.
 ' The call argument is now 1.
 Resume 0
End Sub
Call SuperHand()
' Output:
' Call argument to sub TestHand is 0; will generate error.
' Handling division-by-zero error.
' Call argument to sub TestHand is nonzero (no error).

8-12 LotusScript Programmer’s Guide

Using the Informational Functions
The examples in this section illustrate how LotusScript manages the error number and
its associated error message and line number.

' When the sub DemoErr is called, the values of Error(), Err(), and
' Erl() are assumed to be the empty string (""), 0, and 0
' respectively.
' The occurrence of an error resets them. Completing the associated
' error-handling routine resets them to the initial values.
Sub DemoErr
 ' Show values on entry to sub DemoErr.
 Print "Error: " Error(), " Err:" Err(), " Erl:" Erl()
 ' Designate an error-handling routine; then create an error.
 On Error GoTo ShowErr
 Error 11 ' This is line 10.
 ' Come here after Resume.
 Print "Error: " Error(), " Err:" Err(), " Erl:" Erl()
 Exit Sub
ShowErr:
 ' Display the values on entry to the error-handling routine.
 Print "Error: " Error(), " Err:" Err(), " Erl:" Erl()
 Resume Next
End Sub
Call DemoErr()
' Output:
' Error: Err: 0 Erl: 0
' Error: Division by zero Err: 11 Erl: 10
' Error: Err: 0 Erl: 0

The next example illustrates the flow of control and the change in the values of the
control variables Error, Err, and Erl during error processing. Though it will run and
behave exactly as shown here, this is an artificial script. It is constructed solely to
demonstrate these error-processing features.

' This example omits the Exit Sub statement of the preceding example.
' As a result, execution continues on to the error-handling routine.
Sub ShowErr
 On Error GoTo CheckErr
 Error 150 ' This is line 5.
 Print "Error was handled... Error, Err, Erl are now:"
 Print Error(), Err(), Erl() ' This is line 7.
 ' Exit Sub statement was dropped here.
CheckErr:
 Print Error(), Err(), Erl()
 Resume Next ' This is line 11.
End Sub

Chapter 8: Error Processing 8-13

Call ShowErr()
Print "Back from call of ShowErr"

After error 150 occurs at line 5, the error-handling routine at CheckErr prints this line:

Cannot find module %s 150 5

After the Resume statement, the Print statements in lines 6 and 7 prints these two
lines:

Error was handled... Error, Err, Erl are now:
 0 0

Execution continues on normally to the Print statement at CheckErr, which prints the
following line:

 0 0

Execution then continues normally to the Resume Next statement on line 11. Since
there is no current error, there is no “Next” statement, so the Resume statement itself
is invalid and generates an error, which becomes the current error; and the
error-handling routine at CheckErr is invoked again. It prints the following line:

RESUME without error 20 11

The error-handling routine ends with the statement Resume Next. The “next”
statement is End Sub. So the sub exits normally, and the Print statement after the sub
call prints the following line:

Back from call of ShowErr

That completes execution of this example.

In the next example, an Err statement is placed at the beginning of the error-handling
routine shown in the preceding example. The result is to invalidate the value of Erl: it
no longer describes the error specified by Err.

Sub ShowErr
 On Error GoTo CheckErr
 Error 150 ' This is line 3.
 Print "Error was handled... Error, Err, Erl are now:"
 Print Error(), Err(), Erl() ' This is line 5.
CheckErr:
 ' Reset the error number, without creating an error.
 Err 151
 Print Error(), Err(), Erl()
 Resume Next ' This is line 10.
End Sub
Call ShowErr()
Print "Back from call of ShowErr"

8-14 LotusScript Programmer’s Guide

After error 150 occurs at line 3, the error-handling routine starting at CheckErr
executes. It first sets the error number (the value of Err) to 151. This resets the Error
function also (but not the Erl function). So the Print statement prints the following line:

Cannot find external name 151 3

After the Resume statement, the Print statements on lines 4 and 5 print these two lines:

Error was handled... Error, Err, Erl are now:
 0 0

Execution continues normally to the statements starting at CheckErr. The Err
statement there resets the error number, and the Print statement therefore prints the
following line. (Note that there is no current error, and therefore the value of Erl is
still 0.)

Cannot find external name 151 0

The next statement executed, Resume Next, is invalid because there is no current
error. So it generates an error, and the error-handling routine beginning at CheckErr is
invoked again. It first sets Err to 151, and then prints the following line. (The values of
Error and Err represent the latest assignment to Err; but Erl is still 10 because the
current error occurred at line 10.)

Cannot find external name 151 10

The error-handling routine ends with the statement Resume Next. The “Next”
statement is End Sub. So the sub exits normally, and the Print statement after the sub
call prints the following line:

Back from call of ShowErr

That completes the execution of this example.

Chapter 8: Error Processing 8-15

Chapter 9
Reaching Out

This guide has concentrated on providing you with a conceptual overview of
LotusScript as a complete and self-contained programming language. Now it is time to
turn to the role that LotusScript can play in the larger world of Lotus products, your
operating environment, other programs, and interactive user applications.

This chapter covers the following topics:

The extensions to the LotusScript language supplied by Lotus products

Using input boxes and message boxes to interact with users

Reading and writing files

Using environment variables

Starting, activating, sending keystrokes to, and yielding control to other programs

Using Dynamic Data Exchange (DDE) to exchange data and send instructions to
DDE server applications

OLE automation

Incorporating functionality provided by libraries of external C functions

Working with Lotus products
The Lotus product in which you are working provides the environment in which you
create, debug, and run LotusScript modules, so consult your product documentation
before you begin using LotusScript.

Each Lotus product that works with LotusScript also supplies its own application
programming interface (API), which lets you use product functionality and create and
manipulate product objects from within LotusScript. A product API is effectively an
extension to the LotusScript language that is available when you are running that
product.

Product classes and objects
Each Lotus product with which you use LotusScript provides a number of predefined
classes. In many respects, product objects (instances of product classes) are like
user-defined objects (instances of user-defined classes). For information about
user-defined classes, see Chapter 5, “User-Defined Data Types and Classes.”

9-1

But while user-defined objects exist within the scope of LotusScript modules, many
product objects have their own existence apart from the scripts in which you
manipulate them. You may, for example, use the product interface rather than a script
to create, name, and put text on a command button. You can then attach a script to the
command button “click” event. When the user clicks the command button, the
appearance of the command button changes, and the “click” event script executes.

You can create and assign variable references to product objects, get and set product
object properties, use product object methods, attach scripts to product object events,
and delete product objects. For detailed information about how to perform all of these
operations with specific Lotus product classes, consult the appropriate Lotus product
documentation.

Creating objects
In some cases, the product automatically creates objects (cells in a spreadsheet for
example). In other cases you use the product user interface to create objects, and in
still other cases, you can create objects in a script.

To create an object in a script, you must supply whatever arguments the product
requires to create an instance of the particular class, and you must assign an object
reference to a variable. In many cases, the syntax is as follows:

Dim objRef As prodClass

Set objRef = New [prodClass] [(argList)]

The Dim statement declares an object reference variable. The Set...New statement
creates a product object and assigns the variable a reference to that object. You can
also combine these operations in a single statement:

Dim objRef As New prodClass [(argList])]

In some cases, you use a method to create the object. In Lotus Notes® Release 4, for
example, you use the NotesDatabase Create method to create a new .NSF file.

In other cases, you use a container method to create objects in scripts. A container
method applies to the object that contains the object you are creating. Freelance
Graphics® for Windows, for example, provides container methods for creating
objects.

Referring to objects
The process of creating an object in a script involves assigning a reference to the object
(see above). To refer in a script to an object that already exists, in some cases you can
use the name that the product or user gave to the object. You generally can (and in
some cases you must) assign your own object reference.

9-2 LotusScript Programmer’s Guide

One way to assign your own object reference to a variable is to declare an object
variable:

Dim objRef As prodClass

and bind it to the product object:

Set objRef = Bind [prodClass] [(objName])]

In some cases, the product supplies a function or method that you can use to set an
object reference.

The following Initialize sub works with three Notes objects: a database, a view, and a
document. The sub uses a Dim...New statement to create a new NotesDatabase object
to work with ORGSTRUC.NSF on the HR_ADMIN server, and it uses methods in Set
statements to set variable references to a view and a document. GetView is a
NotesDatabase class method, and GetFirstDocument is a NotesView class method.

Sub Initialize
 Dim db As New NotesDatabase("HR_ADMIN", "ORGSTRUC.NSF")
 Dim view As NotesView, doc As NotesDocument
 Set view = db.GetView("Main View")
 Set doc = view.GetFirstDocument
End Sub

Bracket notation
In some cases, you can use names in brackets rather than object reference variables to
identify Lotus product objects. For example, the product might allow you to use:

[A1].Value = 247000

instead of:

Dim myCell As Cell
Set myCell = Bind Cell("A1")
myCell.Value = 247000

For more information, see “Bracket Notation” in Chapter 7 of the LotusScript Language
Reference, and consult your product documentation.

Properties, methods, and events
Each product class defines a set of properties, methods, and events. As with
user-defined classes, you use dot notation to specify properties and methods. For
more information about dot notation, see “Dot Notation” in Chapter 7 of the
LotusScript Language Reference.

Properties are object attributes. Like variables, properties have values. In many cases,
you can get and set a property’s value just as you get a value from a variable and
assign a value to the variable. Some properties you can only get, and some you can
only set.

Chapter 9: Reaching Out 9-3

A Form object, for example, is an instance of the Lotus Forms Form class. It has a
number of properties, including FullName, CreationDate, and UseNotesSendTo.

The value of the FullName property is a string specifying the path and file name of the
file in which the form is saved. In a script, you can get and set the value of FullName.

The CreationDate property is a date/time value that identifies when the form was
created. You can only get the value of the CreationDate property. The following
statement, gets the creation date and uses the LotusScript CDat function to store it in a
Variant (startDateV) as a date/time value.

startDateV = CDat(myForm.CreationDate)

You can only set the value of the UseNotesSendTo property. UseNotesSendTo is a flag
that you can set to TRUE or FALSE, specifying whether a form embedded in a Notes
mail document can be routed through Notes.

The Send method saves a form in a temporary file and sends the form to a mailing
address. For example:

myForm.Send("Elizabeth Blaney")

When the Send method is executed, it causes the SaveForm event to occur.

Events are object-related actions to which you can attach scripts to perform activities
in an application. When the event occurs, the script attached to the event executes. For
example, you might want to set the value of the FullName property in the SaveForm
event script:

myForm.FullName = "c:\designer\work\orders.1fm"

Lotus products normally handle the process of attaching scripts you write to the
events you specify. You can also use LotusScript On Event statements to attach subs to
object events.

Deleting objects
In some cases, the objects you use the Lotus product user interface to create are saved
from one session to the next, and the objects you create in scripts are temporary. Like
any variables, the object reference variables that you explicitly declare and bind to
product objects have a scope. When all object references (there may be more than one)
to an object created in a script are out of scope, the object itself may be deleted.

In some cases, you can use the Delete statement to delete a product object. In other
cases, the Delete statement deletes the object reference variable, but not the unerlying
object itself. Some products supply methods to remove actual objects. In Notes, for
example, you use the NotesDatabase class Remove method to delete an .NSF file.

Collection classes
Some Lotus products provide collection classes, also known as container classes. A
collection object (an instance of a collection class) contains a collection of objects.

9-4 LotusScript Programmer’s Guide

In Freelance Graphics, for example, an Application object contains an instance of the
Documents collection class. You use the Application class Documents property to
return an instance of the Documents collection class. Each element in the collection is a
document, an instance of the Document class.

Each Document object contains an instance of the Pages collection class. You use the
Document class Pages property to return an instance of the Pages collection class. Each
element in the collection is a page, an instance of the Page class.

Each Page object contains an instance of the ObjectCollection class. You use the Page
Objects property to return an instance of the ObjectCollection class. Each element in
the collection is an instance of the DrawObject class. The ObjectCollection object can
include text boxes, charts, tables, and other objects belonging to classes derived from
the DrawObject class. Text boxes, for example, are instances of the TextBox class,
which is derived from the DrawObject class.

For a discussion of deriving classes (also known as class inheritance), see “Defining
derived classes” in Chapter 5.

You can use ForAll loops or indexing to access individual members of a collection
class. The following script uses three nested ForAll loops to iterate through the
collections. Within individual TextBlock objects, the script uses indexing to set list
entries levels 2 through 5 in each TextBox object to italic.

Dim level As Integer
ForAll doc In CurrentApplication.Documents
 ForAll page In Document.Pages
 ForAll obj In Page.Objects
 ' If the object is a TextBlock, set the font
 ' to Garamond, and set list entries at levels
 ' 2 through 5 to Italic.
 If obj.IsText Then ' IsText is a DrawObject property.
 obj.Font.FontName = "Garamond"
 For level% = 2 to 5
 obj.TextProperties(level%).Font.Italic = TRUE
 Next level%
 End If
 End ForAll
 End ForAll
End ForAll

Determining which product file is being used
On the Windows platform, and to some degree on other platforms, you can use
command-line arguments (in the Windows Program Manager for example) to start
programs and open product files.

Chapter 9: Reaching Out 9-5

The Command function returns the command-line arguments used to start the Lotus
product from which LotusScript was started. If you are starting your Lotus product in
such a manner, you may want to use the Command function to get the name of the
product file. For example, you may use the file name to identify which product file is
currently running, or to provide input for messages to the user.

Suppose, for example, that the command line for launching a Word Pro™ application
is

c:\wordpro\wordpro.exe c:\wordpro\docs\busgoals.lwp

The Command function returns “busgoals.lwp”. You could make this string the title
that appears in any message boxes the script displays.

Dim message As String, messageTitle As String
messageTitle$ = Command$
...
...
' Use messageTitle$ as the title of a message box.
message = "This is a test."
MessageBox message$, messageTitle$

Interacting with the User
Lotus products lend themselves to building interactive applications, applications that
incorporate user input and prompt the user to perform particular tasks. Individual
Lotus products provide their own user interface for interacting with scripts. The
LotusScript language itself, however, supplies a couple of fundamental tools that you
can use with any Lotus product to interact with the user.

You can use the InputBox function to get user input. The InputBox function displays a
dialog box with the prompt you specify, a text box, and OK and Cancel buttons. You
can also specify a title, a default value, and a position on the screen for the input box.

The user enters characters in the text box and clicks OK. InputBox returns the string
the user entered. You can use the data type conversion functions (DateValue, CCur,
CDat, CDbl, CInt, CLng, CSng, CVar) to convert the input to a numeric, date/time, or
Variant value. If you are converting to a nonstring value, you can include some error
handling in case the user enters a string that cannot be converted. “XYZ”, for example,
cannot be converted to a numeric value.

9-6 LotusScript Programmer’s Guide

You can use the Print statement or the MessageBox function or statement to display a
message to the user. The Print statement displays the message in the current output
window, which varies depending on the Lotus product in which you are working.
MessageBox displays a message box. The message box contains an optional title, the
message, an optional icon, and one or more command buttons.

If you simply want to display a message, you can use a MessageBox statement and
include an OK button (the default). The user reads the message, clicks OK, and the
script proceeds to the next statement.

On the other hand, you may want to offer the user two or more options, in which case
you use the MessageBox function and include two or more command buttons. For
example, you can include OK and Cancel buttons. If the user clicks OK, the
MessageBox function returns IDOK (1). If the user clicks Cancel, the function returns
IDCANCEL (2). You can use an If statement or Case statement to respond to the user’s
response accordingly.

The following example uses the InputBox function to get monthly revenue and
expenses from the user, converting strings to Currency.

The script computes the balance, then uses a MessageBox statement to display the
balance, formatted as Currency.

Sub CalcBalance
 Dim revenue As Currency, expenses As Currency, balance As Currency
 revenue@ = CCur(InputBox("How much did we make this month?"))
 expenses@ = CCur(InputBox("How much did we spend?"))
 balance@ = revenue@ - expenses@
 MessageBox "Our balance this month is " _
 & Format(balance@, "Currency")
End Sub

Chapter 9: Reaching Out 9-7

Here are the two input boxes with sample entries and the resulting message box:

If the user enters a string that the CCur function cannot convert to Currency, an error
condition occurs. You can use an On Error statement to branch to an error-handling
routine in such a case.

The following expanded version of the example uses the MessageBox function to ask
the user whether he or she wants to try again. If the user clicks Yes, the function
returns IDYES (6), the script branches back to the EnterValues label, and the user can
try again. If the user clicks No, the function returns IDNO (7), and the script exits the
CalcBalance sub.

The second message box also contains a question mark icon, specified by
MB_ICONQUESTION (32). To use constants rather than the numbers to which they
correspond as MessageBox arguments, you must include the file that defines these
constants, LSCONST.LSS, in the module declarations.

%Include "LSCONST"

Sub CalcBalance
 Dim revenue As Currency, expenses As Currency, balance As Currency
 EnterValues:
 On Error GoTo BadCur:
 revenue@ = CCur(InputBox("How much did we make this month?"))
 expenses@ = CCur(InputBox("How much did we spend?"))
 balance@ = revenue@ - expenses@
 MessageBox "Our balance this month is " _
 & Format(balance@, "Currency")
 Exit Sub

9-8 LotusScript Programmer’s Guide

 BadCur:
 If MessageBox("Invalid entry! Do you want to try again?", _
 MB_YESNO + MB_ICONQUESTION) = IDYES Then GoTo EnterValues
 Exit Sub
End Sub

When the user enters an invalid entry, the message box offers the option of making
another entry:

For more information about error processing, see Chapter 8, “Error Processing.”

Reading and Writing Files
You can use LotusScript to read and write files. To create a file, you open and write to
a file that does not yet exist.

LotusScript provides three modes of file access: sequential (input, output, or append),
random, and binary.

Use sequential access to read and write unstructured text files or text files with
variable-length records. You can use user-defined data type variables with
variable-length string members to read and write variable-length records. Numerical
data is stored in the file as text strings.

Use random access for files that contain fixed-length records. You can use the Seek
statement and a record number for immediate read or write access to any record in the
file. Each record can contain a scalar value or the members of a user-defined data type
variable. If the record includes strings, use fixed-length string variables so that each
record is the same length.

For a discussion about using user-defined data types to work with files, see “Working
with data stored in files” in Chapter 5.

Chapter 9: Reaching Out 9-9

Binary access provides immediate access by number to any byte in the file. In general,
you use binary access to read and write bytes of data. You can however, also use
binary access to write a stream of characters to an unstructured text file.

Opening files
Use the FreeFile function to get a file number, and then use an Open statement to open
a file.

fileNumber% = FreeFile
Open fileName$ [For {Input | Output | Append | Binary | Random }]

[Access {Read | Read Write | Write}]
[{Shared | Lock Read | Lock Read Write | Lock Write }]]
As fileNumber%
[Len = recLen%]

In the Open statement, you specify access mode and the read and/or write operation
you intend to perform. If other processes or users have concurrent access to the file
(over a network, for example), you can also specify how the file is to be shared.

For random access, you specify a record length (unless you are using the default of 128
bytes). To determine record length, you can use the Len or LenB function to return the
length of the scalar variable or user-defined data type variable you are using to read
and/or write records. To enhance performance during sequential access to a file, you
can specify a buffer size for the read/write operations.

Reading from files and writing to them
If you open the file for sequential input or append access, you can use the Input
function to read a specified number of characters into a String (or Variant) variable.
For example, you can use the Input function in conjunction with the LOF function,
which returns the length of an open file, to read the entire file (up to 32,000 characters)
into a String variable:

fileNumber% = FreeFile
Open "DATA.TXT" For Input As fileNumber%
fileContents$ = Input(LOF(fileNumber%), fileNumber%)

To write an extended unstructured string rather than a fixed-length or variable-length
record to a text file, you can open the file for binary access and use a Put statement.
The following Put statement overwrites the previous contents of a text file starting at
the first byte. If the new string is shorter than the previous contents, the Put operation
does not overwrite to the end of the file.

Open "DATA.TXT" For Binary Access Write As fileNumber%
Put fileNumber%, 1, fileContents$

9-10 LotusScript Programmer’s Guide

If a file contains variable-length records, use the Input # and Write # statements to
read and write records. The Input # statement reads a record into a list of variables,
and the Write # statement writes to a file from a list of variables. Write # statements
delimit and format entries so that they can be read by Input # statements. In both
cases, the list of variables may be the members of a user-defined data type variable.

The following example reads each record from SCORES.TXT into a variable-length
user-defined data type variable. If the student’s score is at least 92 , the script writes
the record to HISCORES.TXT. The process continues until the EOF function returns
TRUE (-1), indicating that the script has reached the end of SCORES.TXT.

Type Student
 ID As Long
 Name As String ' Variable-length string variable
 Score As Single
End Type
Dim undergrad As Student

Sub WriteGoodStudents
 Dim fileNum1 As Integer, fileNum2 As Integer
 fileNum1% = FreeFile
 Open "SCORES.TXT" For Input As fileNum1%
 fileNum2% = FreeFile
 Open "HISCORES.TXT" For Append As fileNum2%
 While Not EOF(fileNum1%) ' Read until end of file.
 Input #fileNum1%, undergrad.ID, undergrad.Score
 If undergrad.Score > 92 Then
 Write #fileNum2%, undergrad.ID, undergrad.Name, undergrad.Score
 End If
 Wend
 Close fileNum1%
 Close fileNum2%
End Sub

You can also use a Print # statement to write to a sequential text file, but Print # does
not delimit and format the record to ensure that it can be read with an Input #
statement.

When you are using sequential access to write to a file, you can either replace the
previous contents of the file (if any) or append to the file. In other words, you can
open the file in input mode or append mode. You cannot insert or replace text in the
middle of the file.

Chapter 9: Reaching Out 9-11

You can also use the Line Input # statement to read each line into a String variable.
Write # and Print # statements put a newline character at the end of each operation, so
lines normally correspond to variable-length records (unless you write multiline
strings).

When you open a file for random or binary access, the file position is 1 (the first record
or byte). Use a Get statement to read data into a variable, and use the Put statement to
write data from a variable to the file. The variable may be a user-defined data type
variable. Each Get and Put operation advances the file position accordingly. You can
use the Seek statement to set the file position to a fixed-length record (random access)
or to a byte (binary access). To get the current file position, use the Seek function.

Here is a revision of the preceding example, using fixed-length records and random
access. Performance is better, numeric information is stored as such (rather than as
strings), but the fixed-length string takes up a little extra space in each record.

Type Student
 ID As Long
 Name As String * 20 ' Fixed-length string variable.
 Score As Single
End Type
Dim undergrad As Student

Sub WriteGoodStudents
 Dim fileNum1 As Integer, fileNum2 As Integer
 fileNum1% = FreeFile
 Open "TESTSCORES.TXT" For Random Access Read As fileNum1% _
 Len = Len(undergrad)
 fileNum2% = FreeFile
 Open "GOODSCORES.TXT" For Random Access Write As fileNum2% _
 Len = Len(undergrad)
 While Not EOF(fileNum1%) ' Read until end of file.
 Get #fileNum%1,, undergrad
 If undergrad.Score > 92 Then
 Put #fileNum2%,, undergrad
 End If
 Wend
 Close fileNum1%
 Close fileNum2%
End Sub

Closing files
As soon as you complete your read/write operations, use the Close statement to close
the file. If you modified the file, the Close statement also writes modifications to disk.

You must close the file before you can open it again. If you want to change access
mode or operation (from read to write, for example), you must close the file, then
open it again.

9-12 LotusScript Programmer’s Guide

For more information about working with files, see Chapter 4, “File Handling,” in the
LotusScript Language Reference.

Interacting with Other Programs
LotusScript provides a number of functions and statements that you can use to
interact with other programs and the operating system. You can also use Object
Linking and Embedding (OLE) and Dynamic Data Exchange (DDE) to incorporate
functionality and data from other Windows applications into your LotusScript
applications.

Functions and statements for interacting with other programs
LotusScript provides several functions and statements that you can use to interact
with other programs and with the operating system.

Function/Statement Purpose

Shell function Starts another program

ActivateApp function Activates (gives focus to) the specified window

SendKeys statement Sends keystrokes to the active window

Environ function Returns the current value of an environment variable

Yield function/statement Transfers control during script execution to the operating system

The Windows platform supports all of these functions and statements. On the OS/2®,
UNIX®, or Macintosh® platforms, some of these are only partially supported or not
supported at all. For more information, see Appendix D, “Platform Differences,” in the
LotusScript Language Reference.

The following example uses all of these functions and statements to interact with a
Windows accessory, Notepad:

The Environ function returns the Windows Temp directory, the directory where
Windows creates and maintains temporary files.

Note On the Windows and OS/2 platforms, the operating system and some
programs make use of environment variables that you set. Under MS-DOS®, for
example, you use CONFIG.SYS, AUTOEXEC.BAT, and other batch files to set
environment variables. You can use the MS-DOS Set command to see a list of
environment variables and their current settings. In a script, you can use the
Environ function to return the current value of an environment variable.

The Shell function starts NOTEPAD.EXE.

The ActivateApp function makes sure that Notepad has the focus so that
keystrokes can be sent to it.

Chapter 9: Reaching Out 9-13

SendKeys statements save a note the user writes in a text file, minimize the
Notepad window, and close Notepad.

The Yield function lets Windows pass control to Notepad so the user can use it to
compose a note.

The example contains two module-level variables and four subs. The module-level
variables are String variables:

Dim startDir As String ' The current directory at startup.
Dim fileName As String ' The note file name.

The four subs are Initialize, CreateNote, ReadNote, and Terminate. Initialize
automatically executes when the module is loaded. In turn, Initialize calls CreateNote
and ReadNote. Terminate executes before the module is unloaded.

The Initialize sub makes the Windows Temp directory the current directory, makes
sure that a file named _MYNOTE.EXE exists and is empty, calls the CreateNote sub,
then calls the ReadNote sub.

Sub Initialize
 Dim tempDir As String, taskID As Integer
 ' Store the name of the current directory, then make the
 ' Windows Temp directory the current directory.
 startDir$ = CurDir$
 tempDir$ = Environ("Temp")
 ChDir tempDir$
 fileName$ = "_MYNOTE.TMP"
 ' Make sure the file exists and is empty before opening Notepad.
 fileNum% = FreeFile
 Open fileName$ For Output As fileNum%
 Write #fileNum% ' The file now contains only an empty line.
 Close fileNum%
 ' Open the file (guaranteed to exist) in Notepad.
 taskID% = Shell("notepad " & fileName$)
 CreateNote ' Create the note. See the CreateNote sub below.
 ReadNote ' Display the note. See the ReadNote sub below.
End Sub

The CreateNote sub creates a header for the note, including the current date and time,
displays a message, activates (shifts focus to) Notepad, and sends the header to
Notepad. Then it yields control to Windows for 10 seconds. Windows, in turn allows
the user to type into Notepad. If the 10-second While loop with the Yield were
excluded, script execution would continue without any pause, giving the user no time
to enter a note.

After the 10 seconds have elapsed, an ActivateApp statement insures that Notepad
has the focus (just in case the user has shifted focus to another window), and a
SendKeys statement sends keystrokes for the File Save menu command and the
Control menu Minimize command.

9-14 LotusScript Programmer’s Guide

The keystrokes for File Save are Alt+fs and the keystrokes for Minimize are
Alt+spacebar+n. Alt+spacebar+ opens the Control menu in the Notepad title bar. In a
SendKeys statement, % represents the Alt key.

Sub CreateNote
 Dim header As String, finish As Single
 MessageBox "Write your note."
 header$ = Format(Now, LongDate) &"~~Note: "
 ActivateApp "notepad - " & fileName$
 SendKeys "~" & header$, TRUE ' Send the note header to Notepad.
 finish! = Timer + 10
 While Timer < finish!
 Yield
 Wend
 ActivateApp "notepad - " & fileName$
 SendKeys "%fs% n",TRUE ' Save the file and minimize the window.
End Sub

The ReadNote sub displays a message box, opens the file that was just saved, inputs
the file contents into a String variable, and displays a message with the contents. The
file name appears in the message box title bar.

Sub ReadNote
 MessageBox "Read your note."
 fileNum% = FreeFile
 Open fileName$ For Input As #fileNum%
 message$ = Input$(LOF(fileNum%), fileNum%)
 Close fileNum%
 MessageBox message$, , fileName$
End Sub

The Terminate sub then executes. Once again, an ActivateApp statement shifts focus
to Notepad, just in case the user moved the focus to another window. A SendKeys
statement sends Alt+F4 to Notepad, which closes Notepad. Then the sub makes the
current directory at startup the current directory again.

Sub Terminate
 ActivateApp "notepad - " & fileName$
 SendKeys "%{f4}", TRUE
 ChDir startDir$
End Sub

OLE Automation
A Windows application that supports OLE Automation provides a set of product
classes, each with a set of properties and methods. You can create and manipulate
objects in such an application much as you do in the Lotus product from which you
are running LotusScript.

Chapter 9: Reaching Out 9-15

Shapeware® Visio™, for example, is a Windows drawing package that supports OLE
automation. The following example builds an array of strings. Each string contains the
name and job title of a manager on a Visio organizational chart.

In the module declarations, declare a dynamic one-dimensional array of strings:

Dim manager() As String

The GetManagers sub uses the CreateObject function to create an instance of the Visio
Application class, which runs a new instance of the Visio program (VISIO.EXE). To get
an instance that is already running, use the GetObject function.

A Visio Application object contains a collection of documents. Each document
contains a collection of pages, and each page contains a collection of shapes. Visio
provides a class for each of these: Application, Documents, Document, Pages, Page,
Shapes, and Shape.

GetManagers uses the Documents class Open method to open a drawing file, a
Document object. The sub then cycles through the pages in the document and the
shapes on each page. For each shape with “Manager” in its Name property, the sub
places the Text property value in a new element of the array. The Text property for a
Manager shape contains a manager’s name and job title.

Sub GetManagers
 ' Use Variant variables for objects
 Dim appVisioV As Variant, docObjV As Variant
 Dim shapesObjV As Variant, shapeObjV As Variant
 Dim orgchart As String
 Dim iPage As Integer, iShape As Integer, iManager As Integer
 Set appVisioV = CreateObject("visio.application")
 orgchart$ = "c:\visio\drawings\orgchart.vsd"
 Set docObjV = appVisioV.Documents.Open(orgchart$)
 For iPage% = 1 To docObjV.Pages.Count
 Set shapesObjV = docObjV.Pages.Item(iPage%).Shapes
 For iShape% = 1 To shapesObjV.Count
 Set shapeObjV = shapesObjV.Item(iShape%)
 If Instr(shapeObjV.Name, "Manager") > 0 Then
 iManager% = iManager% + 1
 ReDim Preserve manager$(1 To iManager%)
 manager$(iManager%) = shapeObjV.Text
 End If
 Next iShape%
 Next iPage%
 appVisioV.Quit
End Sub

9-16 LotusScript Programmer’s Guide

To display the contents of the array, use the following:

For i% = 1 To Ubound(manager$)
 Print manager$(i%)
Next

For information about Visio classes, including their properties and methods, see the
Visio documentation.

Dynamic Data Exchange (DDE)
You may be able to use DDE to exchange data between the Lotus product with which
you are working and another Windows program. In Lotus Forms, for example, you
can create a DDE object in a script and use the object to retrieve data from, poke
(send) data to, or send a command to a Windows program that is registered as a DDE
server application.

The following Lotus Forms example starts 1-2-3 for Windows and opens a worksheet,
then retrieves the value in the range named MiscTotal and places it in field 1 of the
current form.

Sub BUTTONButton2(B2 As Button)
 Dim taskId As Integer
 ' Start 1-2-3 (the DDE server) and open a worksheet.
 taskId% = Shell(c:\123r5w\programs\123w.exe, _
 d:\work\expenses.wk4")
 ' Create the DDE object.
 Set DDE123 = New DDE("123worksheet", "d:\work\expenses.wk4")
 ' Retrieve the value in the range named MiscTotal and place it in
 ' Field 1 of the current form.
 Field1.Value = DDE123.Request ("MiscTotal")
 ' Terminate the DDE conversation
 DDE123.Terminate
End Sub

For more information about the DDE object, see the Lotus Forms documentation. For
more information about using 1-2-3 for Windows as a DDE server, see the 1-2-3 for
Windows documentation.

Calling C Functions
In some cases, you may want to use functionality that is provided by a library of C
functions. Under Windows, for example, you can use functions in Dynamic Link
Libraries. You may obtain such libraries from a variety of sources. All Windows users
have access to the libraries in the Windows application programming interface (API).

Chapter 9: Reaching Out 9-17

To work with C functions, you need documentation that explains their input and
output parameters, return values, and what operations they actually perform. The
Windows Software Developer’s Kit, for example, includes Windows API
documentation. The Windows API is also documented in a variety of commercially
available books.

Suppose, for example, that you want to change the text that appears in the title bar of
the window from which you are running LotusScript. You can use the SetWindowText
function in the Windows User library to perform this operation.

Declaring C functions
To use C functions, first you must declare them in Declare statements. Declare
statements appear at the module level, so enter these statements in the declarations
section of the module where you want to call the C functions.

In a Declare statement, you can declare a C function as either a function or a sub. The
syntax is:

Declare [Public | Private] {Function | Sub}

LSname Lib libName

[Alias aliasName]

([argList]) [As returnType]

If the C function does not return a value, or you are not interested in the return value,
you can declare it as a Sub. In either case, the Declare statement identifies the library
containing the function. All the C functions mentioned in this section come from the
User library in the Windows 3.1 API.

GetActiveWindow takes no parameters and returns the handle (an integer) of the
active window (the window with focus).

Declare Function GetActiveWindow Lib "User" () As Integer

SetWindowText returns nothing, so you can declare it as a sub. It has two input
parameters: the window handle and a string. As long as they are valid LotusScript
identifiers, you can use your own parameter names or copy the names used in the API
documentation, as in the example below.

Declare Sub SetWindowText Lib "User" (ByVal hWnd As Integer, _
 ByVal lpString As String)

Passing arguments to C functions
By default, LotusScript passes arguments to functions and subs by reference. If the
argument is an array, a user-defined data type variable, or an object reference variable,
you must pass it by reference. In most other cases, you use the ByVal keyword to pass
variables by value.

9-18 LotusScript Programmer’s Guide

Passing strings
When you pass strings by value, LotusScript actually creates a NULL-terminated
string (which is what the C function expects) and passes a pointer to the string. If you
are passing a pointer to something other than a string, then pass the parameter by
reference.

Here is a sub that uses the Windows C functions GetActiveWindow and
SetWindowText to set the title of the active window (the window with focus):

Sub Initialize
 Dim activeWin As Integer, winTitle As String
 activeWin% = GetActiveWindow()
 winTitle$ = "This is my window!"
 SetWindowText activeWin%, winTitle$
End Sub

To get a window title at run time, use the GetWindowText function. GetWindowText
has one input parameter (the window handle, and integer in Windows 3.1) and two
output parameters: a String variable and a buffer size (the maximum length of the
string). The return value is the length of the string that the function places in the String
variable.

Declare Function GetWindowText Lib "User" _
 (ByVal hWnd As Integer,
 ByVal lpString As String _
 ByVal chMax As Integer) As Integer

You must be careful when working with a String variable that is given a value by a
C function. If the C function assigns a value that is larger than the length already
allocated for the string, it overwrites memory not allocated for the string. The results
are unpredictable and may cause a crash.

You can make sure that the String variable has space for the string in one of two ways:

Assign it a value that is at least as long as the string to be returned before you pass
the variable to the C function.

Declare it as a sufficiently sized fixed-length String variable.

For example, if the maximum length for the string is 255, then you can use the String
function to put 255 NULL characters in a variable-length String variable:

winTitle$ = String(255, 0)

Or you can declare winTitle as a fixed-length String variable:

Dim winTitle As String * 255

Chapter 9: Reaching Out 9-19

GetWindowText returns the actual length of the string. If you use a variable-length
String variable, you can use the return value to get rid of the padding at the end of the
string. For example:

Dim winTitle As String, winLength As Integer
winTitle = String(255, 0)
activeWin% = GetActiveWindow()
winTitleLength% = GetWindowText(activeWin%, winTitle$, 255)
winTitle$ = Left(winTitle$, winTitleLength%)

Note If you use a C function that does not return the length of a string, you can
extract the left portion of the string up to the first NULL character as follows:

stringFromC $ = Left(stringFromC $, Instr(stringFromC $, Chr$(0)) -1)

Using user-defined data type variables
The GetWindowRect C function uses a structured type to retrieve the screen
coordinates (in pixels) of the specified window. You must use a Type statement to
define the structure. GetWindowRect does not have a return value, so you can declare
it as a sub. You pass the window handle by value and the user-defined data type
variable by reference. The window handle is an input parameter (it identifies the
window), and the Rect user-defined data type variable is an output parameter
(GetWindowRect sets its values).

The following set of declarations also includes MoveWindow, which you can use to
move and/or rezize the window. This example also uses data type suffix characters to
save space in the Declare statements.

Type Rect
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
End Type
Declare Sub GetWindowRect Lib "User" (ByVal hWnd%, lpRect As Rect)

' MoveWindow takes input parameters for the window handle, the
' top left coordinates, the width and height, and a repaint flag.
' The repaint flag (TRUE or FALSE) indicates whether to repaint the
' the window after the move/resize operation.
Declare Sub MoveWindow Lib "User" (ByVal hWnd%, ByVal nLeft%, _
 ByVal nTop%, ByVal nWidth%, ByVal nHeight%, ByVal fRepaint%)
Declare Function GetActiveWindow Lib "User" () As Integer

9-20 LotusScript Programmer’s Guide

Sub Initialize
' Cut the width and height of the active window in half, keeping the
' same coordinates for the top left corner.
 Dim activeWin As Integer, winRect As Rect
 activeWin% = GetActiveWindow()
 GetWindowRect activeWin%, winRect
 MoveWindow activeWin%, winRect.left, winRect.top, _
 winRect.Right/2, winRect.bottom/2, TRUE
End Sub

Extended example
The following example uses five Windows 3.1 API functions. The user identifies a
window in which to work. The script finds the window, resets the window text, and
yields control as long as the user keeps the focus in the window. When the user moves
focus out of the window, the script restores the original window text and displays a
message. If the user asked for a window that does not exist or is not running, the
script also displays an appropriate message.

All declarations are at the module level.

' Gets the handle of the active window.
Declare Function GetActiveWindow Lib "User" () As Integer

' Gets the handle of the next window.
Declare Function GetNextWindow Lib "User" _
 (ByVal hwnd As Integer, _
 ByVal uFlag As Integer)
 As Integer
' Windows constant for uFlag parameter: return the handle of the next
' (not the previous) window in the window manager's list.
Const GW_HWNDNEXT =2

' Makes a window (identified by its handle) the active window.
Declare Sub SetActiveWindow Lib "User" (ByVal hwnd As Integer)

' Gets the text in the window title bar.
Declare Function GetWindowText Lib "User" _
 (ByVal hwnd As Integer,
 ByVal lpString As String, _
 ByVal chMax As Integer) As Integer

' Sets the text in the window title bar.
Declare Sub SetWindowText Lib "User" _
 (ByVal hwnd As Integer, _
 ByVal lpString$)

Chapter 9: Reaching Out 9-21

Sub Initialize
 Dim winTitle As String, winTitleLength As Integer
 ' Put 255 NULLs in winTitle$, so enough space is allocated for the
 ' GetWindowText output string.
 winTitle$ = String(255, 0)
 Dim findWinTitle As String, tempWinTitle As String
 Dim curWindow As Integer, found As Integer
 tempWinTitle$ = "I'm working here now!"
 findWinTitle$ = InputBox("What window do you want to use?")
 ' If the input box is empty, exit the sub.
 If Len(findWinTitle$) = 0 Then Exit Sub
 ' Get the handle of the active window (the window from which this
 ' script is running).
 curWin% = GetActiveWindow%()
 ' Search for the window the user indicated. The search continues
 ' until the window is found or all windows have been examined.
 ' GetNextWindow returns 0 after it has cycled through all windows.
 Do While curWin% <> 0
 ' Get the next window.
 curWin% = GetNextWindow(activeWin%, GW_HWNDNEXT)
 ' Get the window title.
 winTitleLength% = GetWindowText(curWin%, winTitle$, 255)
 ' If text the user entered is part of the window title
 ' (do a case-insensitive text comparison), then the search
 ' is done. Otherwise, continue the Do loop.
 If Instr(1, winTitle$, findWinTitle$, 1) > 0 Then
 found% = TRUE
 Exit Do
 End If

9-22 LotusScript Programmer’s Guide

 Loop
 ' If the window was found, then reset the window title, and make it
 ' the active window.
 If found% = TRUE Then
 SetWindowText curWin%, tempWinTitle$
 SetActiveWindow(curWin%)
 ' As long as it remains the active window, yield control,
 ' letting the user continue to work in the window.
 While GetActiveWindow%() = curWin%
 Yield
 Wend
 ' The user moved focus out of the window.
 ' Get rid of the padding at the end of the String variable.
 winTitle$ = Left(winTitle$, winTitleLength%)
 ' Display a message, and set the window title back to its
 ' original.
 MessageBox "Done working with " & winTitle$ & "!"
 SetWindowText curWin%, winTitle$
 ' If the window was not found, display a message.
 Else
 MessageBox "Window not found!"
 End If
End Sub

Chapter 9: Reaching Out 9-23

Symbols
... (ellipsis), 1-5
.. (double period), 5-30
=> (greater than or equal operator),

6-3, 6-11
>= (greater than or equal operator),

6-3, 6-11
<= (less than or equal operator), 6-3,

6-11
=< (less than or equal operator), 6-3,

6-11
<> (not equal operator), 6-3, 6-11
>< (not equal operator), 6-3, 6-11
_(underscore), 2-7
{ } (braces), 1-5, 2-4, 2-6
[] (brackets), 1-4, 2-7, 6-13, 9-3
() (parentheses), 2-7
| | (vertical bars), 2-3, 2-6
& (ampersand), 2-4, 2-6, 6-11
' (apostrophe), 1-5
* (asterisk), 2-6, 6-3, 6-13
@ (at sign), 2-4, 2-6
\ (backslash), 6-3
^ (caret), 6-3
: (colon), 1-5, 2-3, 2-6
, (comma), 2-7
$ (dollar sign), 2-4, 2-6
= (equal sign), 6-3, 6-11
! (exclamation point), 2-4, 2-6
> (greater than sign), 6-3, 6-11
< (less than sign), 6-3, 6-11
- (minus sign), 6-3
% (percent sign), 2-4, 2-6
. (period), 2-7, 5-14, 9-3
+ (plus sign), 6-3, 6-11
(pound sign), 2-4, 2-6, 6-13
? (question mark), 6-13
" " (quotation marks), 2-3, 2-6
' (quote), 2-7
; (semicolon), 2-7
/ (slash), 6-3
~ (tilde), 2-5
_ (underscore), 1-5, 2-3
| (vertical bar), 1-4
&B (base 2 indicator), 2-3

&H (base 16 indicator), 2-3
&O (base 8 indicator), 2-3

A
Access

binary files, 9-10
changing access modes, 9-12
random files, 9-9
sequential files, 9-9

ActivateApp function, 9-13
Actual parameters, 4-7
Addition operator (+), 6-3
Aligning data types, 5-4
Ampersand (&), 2-6, 6-11
And operator, 6-3
Apostrophe, see Single quote
Apostrophe ('), 1-5
Applications, 2-1

determining which is in use, 9-5
interacting with, 9-13

Arguments, 4-7
passing by reference, 4-7
passing by value, 4-7
see also Parameters

Arithmetic operators, see Operators
Array data type, 3-3
Arrays, 3-19

bounds list, 3-20
data type of, 3-24, 3-30
DataType function, 3-30
Dim statement, 3-21, 3-28
dimensions, 3-19, 3-20
dynamic, 3-21, 3-28
Erase statement, 3-30
fixed, 3-22
indexes, 3-19
IsArray function, 3-30
lower bound, 3-20
ReDim statement, 3-29
referring to elements, 3-26
size of, 3-29
subscripts, 3-19, 3-26
TypeName function, 3-31
upper bound, 3-20

Assignment operators, see Operators
Associativity, of operators, 6-16
Asterisk (*), 2-6, 6-3, 6-13
At sign (@), 2-6
Automatic data type conversion, 3-48

B
Backslash (\), 6-3
Base 16 indicator (&H), 2-3
Base 2 indicator (&B), 2-3
Base 8 indicator (&O), 2-3
Base classes, 5-9

methods, 5-10
properties, 5-10
referring to members, 5-30

Base prefix character (&), 2-6
Benefits of classes, 5-8
Binary files, 9-10

reading, 9-12
writing, 9-10

Binary numbers, 2-3
Binding objects, 5-14
Bitwise operators, see Operators
Blank lines, in scripts, 2-2
Block statements, 7-2
Bold typeface, in syntax diagrams,

1-4
Boolean operators, see Operators
Boolean values, 3-40
Bounds lists, 3-20
Braces ({ }), 1-5, 2-4, 2-6
Bracket notation, 9-3
Brackets ([]), 1-4, 2-7, 6-13
Branching statements, 7-2
Breakpoints, 2-9
Built-in constants, 3-4

EMPTY, 3-4
FALSE, 3-4
NOTHING, 3-4
NULL, 3-4
PI, 3-4
TRUE, 3-4

Built-in constants, file of, 9-8

Index-1

Index

LotusScript Programmer's Guide
Please note that the page numbers listed in the Index refer to the page numbers that appear in the footers of the printed documentation. To navigate to a specific page, select the chapter and use the scroll buttons in the tool bar to go to the page.

Built-in functions, 3-17, 4-1
ActivateApp, 9-13
CDat, 3-42
Command, 9-6
CreateObject, 9-16
DataType, 3-30, 3-35, 3-42
Date, 3-42, 3-44
DateNumber, 3-42, 3-44
DateValue, 3-44
Day, 3-44
Environ, 9-13
EOF, 9-11
Erl, 8-2, 8-13
Err, 8-2, 8-4, 8-13
Error, 8-2, 8-13
Error$, 8-2
FileDateTime, 3-44
Format, 3-44
FreeFile, 9-10
GetObject, 9-16
Hour, 3-44
Input, 9-10
InputBox, 9-6
IsArray, 3-30
IsDate, 3-44
IsElement, 3-35
IsList, 3-35
LBound, 3-26
ListTag, 3-35
LOF, 9-10
MessageBox, 9-7
Minute, 3-44
Month, 3-45
Now, 3-42, 3-45
Second, 3-45
Seek, 9-12
Shell, 9-13
Time, 3-45
TimeNumber, 3-45
Timer, 3-45
TimeValue, 3-45
Today, 3-45
TypeName, 3-31, 3-35, 3-42
WeekDay, 3-45
Year, 3-45
Yield, 9-13

Byte alignment for data types, 5-4

C
C functions

calling, 9-17
declaring, 9-18

passing arguments to, 9-18
passing strings to, 9-19

Call statement, 4-17
Calling C functions, 9-17
Calling Sub Delete, 5-29
Calling Sub New, 5-29
Case sensitivity, of names, 2-4
CDat function, 3-42, 3-44
Changing access modes, 9-12
Changing an array's size, 3-29
Class libraries, 5-8
Class members, 5-13

referring to, 5-14
scope, 5-18
scope of, 5-13

Classes, 5-1, 5-7
arrays and lists of, 5-33
base classes, 5-9
benefits of, 5-8
bracket notation, 9-3
class libraries, 5-8
collection classes, 9-4
creating objects, 5-16, 9-2
declaring object reference

variables, 5-15
defining member variables, 5-9
deleting objects, 5-21, 9-4
derived classes, 5-9, 5-23, 5-25
dot (.) notation, 5-14, 9-3
dotdot (..) notation, 5-30
events, 9-3
for Lotus products, 9-1
inheritance, 5-9, 5-23, 5-25
instance of, see Objects
Me keyword, 5-14
methods, 5-7, 5-10, 9-3
names of, 2-4
object reference variables, 5-14,

5-17
object references, 3-3, 5-14
objects, 5-15
overriding methods, 5-24
overriding properties, 5-24
properties, 5-10, 9-3
referring to object members, 5-14
referring to objects, 9-2
scope, 5-18
scope of, 5-13
user defined, 3-3

Closing files, 9-12
Code examples

executing, 1-2
Collection classes, 9-4

Collections
arrays, 3-19
lists, 3-32

Colon (:), 1-5, 2-3, 2-6
Comma (,), 2-7
Command function, 9-6
Comment indicator ('), 1-5, 2-7
Comments, 7-1
Comparison operators, see Operators,

6-3
Compile-time errors, 2-7, 8-1
Compiled files, 5-8
Compiled scripts, 2-8
Compiler directives, 7-1
Compiling scripts, 2-7
Concatenation operators, see

Operators
Conditionals, 7-2
Constants, 3-1, 3-4

built-in, 3-4
data type suffix characters, 3-7
EMPTY, 3-4
FALSE, 3-4
LSCONST.LSS file, 3-4, 3-5
LSCONST.LSS file, 9-8
LSERR.LSS file, 8-6
names of, 2-4
NOTHING, 3-4
NULL, 3-4
PI, 3-4
product specific, 3-5
scope, 3-1, 3-8
testing for the data type, 3-7
TRUE, 3-4
user defined, 3-5

Constructing statements, 2-2
Constructor sub, 4-20
Constructor sub, see Sub New
Container classes, see Collection

classes
Container variable, 7-32
Continuing statements on additional

lines, 2-3, 2-7
Conversion of data types, 3-46
CreateObject function, 9-16
Creating objects, 5-16, 9-2
Creating script modules, 2-8
Curly braces ({ }), 1-5, 2-4, 2-6
Currency data type, 3-3

default value of, 3-14
Current error, 8-3

Index-2

D
Data hiding, 5-13
Data structures, conserving memory,

5-4
Data type suffix characters, 2-4, 3-6

& (ampersand), 2-6
@ (at sign), 2-6
$ (dollar sign), 2-6
! (exclamation point), 2-6
(pound sign), 2-6
% (percent sign), 2-6
for constants, 3-7
omitting, 3-7

Data types
Array, 3-3
byte alignment, 5-4
converting, 3-46
Currency, 3-3
date/time, 3-41
default data type, 3-7
default values of, 3-14
Double, 3-2
Integer, 3-2
List, 3-3
Long, 3-2
names of, 2-4
of arrays, 3-24, 3-30
of constants, 3-7
of object references, 3-3
of user-defined classes, 3-3
of variables, 3-9
scalar, 3-2
Single, 3-2
String, 3-3, 3-11
user defined, 3-3, 5-1, 5-3, 5-9
Variant, 3-3, 3-37
Variants, 5-17

DataType function, 3-7, 3-30, 3-35,
3-42

Date/time data type, 3-41
Date function, 3-42, 3-44
Date statement, 3-44
Date values, 3-41

valid ranges, 3-42
DateNumber function, 3-42, 3-44
DateValue function, 3-42, 3-44
Day function, 3-44
DDE, 9-17
Debugger, see Script Debugger
Debugging scripts, 2-9

breakpoints, 2-9
stepping through, 2-9

Decimal numbers, 2-3

Declarations, 7-1
Declare statement, 4-4, 9-18
Declaring dynamic arrays, 3-28
Declaring fixed arrays, 3-24
Declaring lists, 3-33
Declaring object reference variables,

5-15
Declaring properties, 4-21
Declaring subs, 4-16
Declaring user-defined data types,

5-4
Declaring variables

explicitly, 3-9
implicitly, 3-14
two or more at once, 3-13

Default data types, 3-7
Default values of variables, 3-14
Defining data types, 5-3
Defining functions, 4-6
Defining member variables, 5-3, 5-9
Defining methods, 5-10
Defining properties, 4-21, 5-10
Defining subs, 4-16
Definition statements, 7-2
Deftype statement, 3-16
Delete statement, 5-21
Delete sub, 4-19, 4-20, 5-12, 5-21

calling, 5-29
Deleting objects, 5-21, 9-4
Derived classes, 5-9, 5-23, 5-25

defining members, 5-26
using Sub New, 5-28

Destructor sub, 4-20
Destructor sub, see Sub Delete
Determining data types, 3-7
Determining which application is in

use, 9-5
Dim statement, 3-13, 3-21, 5-15

dynamic arrays, 3-28
fixed arrays, 3-24
lists, 3-33

Dimensions, of arrays, 3-19, 3-20
Directives, 7-1
Division, remainder of, 6-3
Division operators

floating-point division (/), 6-3
integer division (\), 6-3

DLLs, using, 9-17
Do loops, 7-19
Do statement, 7-19
Documentation

Lotus product keywords, 2-2
LotusScript, 1-1

Dollar sign ($), 2-6

Dot (.) notation, 5-14, 9-3
Dotdot (..) notation, 5-30
Double-precision numbers, 3-2
Double data type, 3-2

default value of, 3-14
Dynamic arrays, 3-21, 3-28

DataType function, 3-30
declaring, 3-28
Dim statement, 3-28
ReDim statement, 3-29
TypeName function, 3-31

Dynamic Data Exchange, 9-17
Dynamic Link Libraries, 9-17

E
E notation, 2-3
Editor, see Script Editor
Elements of arrays, 3-26

data types of, 3-31
Ellipsis (...), 1-5
EMPTY value, 3-4
Encapsulation, 5-13
End statement, 7-18
Environ function, 9-13
Environment variables, 9-13
EOF function, 9-11
Equal operator (=), 6-3, 6-11
Eqv operator, 6-3
Erase statement, 3-30, 3-36
Erasing objects, 9-4
Erl function, 8-2, 8-13
Err function, 8-2, 8-4, 8-13
Err statement, 8-2
Error$ function, 8-2
Error-handling routines, 8-3
Error function, 8-2, 8-13
Error line number, returning, 8-2
Error messages

defining, 8-3
returning, 8-2

Error numbers
constants, 8-6
defining, 8-2
resetting, 8-4
returning, 8-2

Error statement, 8-2, 8-3
Errors

compile-time, 8-1
current error, 8-3
Erl function, 8-2, 8-13
Err function, 8-2, 8-13
Err statement, 8-2
Error$ function, 8-2

Index-3

Error function, 8-2, 8-13
Error statement, 8-2, 8-3
handling, 8-3
informational functions, 8-2, 8-13
LSERR.LSS file, 8-6
On Error statement, 8-3, 8-4, 8-7,

8-9
run-time, 8-1

Escape character (~), 2-5
Events, 2-1
Events, for Lotus product classes, 9-3
Examples

executing, 1-2
Exclamation point (!), 2-6
Exclusive Or operator, 6-3
Executing functions, 4-13
Executing scripts

breakpoints, 2-9
stepping through, 2-9

Executing subs, 4-17
Exit statement, 7-16
Explicit data type conversion, 3-47
Explicitly declaring variables, 3-9
Exponentiation operator (^), 6-3
Expressions, 6-1

F
FALSE value, 3-4, 3-40
File handle, see File number character
File handling, 9-13
File number character (#), 2-6
FileDateTime function, 3-44
Files

 using with types, 5-6
binary, 9-10
closing, 9-12
compiled scripts, 2-8
file number character (#), 2-6
fixed-length records, 9-12
LSCONST.LSS, 3-4, 3-5
LSCONST.LSS file, 9-8
LSERR.LSS, 8-6
LSO, 2-8, 5-8
of LotusScript constants, 9-8
opening, 9-10
random, 9-9
reading, 9-9, 9-10
sequential, 9-9
variable-length records, 9-11
writing, 9-9, 9-10

Fixed-length records, 9-12
Fixed-length strings, 3-12, 3-14

Fixed arrays, 3-22
bounds list, 3-24
DataType function, 3-30
declaring, 3-24
Dim statement, 3-24
dimensions, 3-24
lower bound, 3-24
re-initializing, 3-30
size of, 3-24
TypeName function, 3-31
upper bounds, 3-24

Floating-point numbers, 2-3, 3-2
Flow of execution, 7-1
For loops, 7-23
For statement, 7-23

nesting, 7-26
ForAll statement, 7-29

container variable, 7-32
Formal parameters, 4-7
Format function, 3-44
Formats, numeric, 2-3
FreeFile function, 9-10
Functions, 4-1

block terminator, 4-2
calling C functions, 9-17
declaring C functions, 9-18
defining, 4-6
executing, 4-13
in a class, 5-10
names of, 2-4
overriding, 5-26
passing arguments to C functions,

9-18
passing strings to C functions,

9-19
predefined, 3-17
recursive, 4-15
return value, 3-17, 4-11
see also Built-in Functions
signature, 4-2
terminating, 7-16, 7-18
user-defined, 4-13
with multiple arguments, 4-15
with no arguments, 4-13
with one argument, 4-14

G
Get statement, 9-12
GetObject function, 9-16
GoSub statement, 7-14
GoTo statement, 7-11
Greater than operator (>), 6-3, 6-11

Greater than or equal operator (>= or
=>), 6-3, 6-11

H
Handling errors, 8-3
Hexadecimal numbers, 2-3
Hiding data, 5-13
Hour function, 3-44

I
Identifiers

case sensitivity, 2-4
constructing, 2-4
data type suffix characters, 2-4
for variables, 3-9
length of, 2-4
using illegal identifiers, 2-5

%If directive, 7-1
If...GoTo...Else statement, 7-11
If...Then...Else statement, 7-4
If...Then...Elseif statement, 7-6
If..GoTo...Else statement, 7-12
Illegal names, using, 2-5
Imp operator, 6-3
Implicitly declaring variables, 3-14
%Include directive, 7-1
Indexes

for arrays, 3-19
for lists, 3-32

Inheritance, 5-9, 5-23, 5-25
Initialize sub, 4-19, 4-20
Input # statement, 9-11
Input function, 9-10
InputBox function, 9-6
Instances of a class, see Objects
Integer data type, 3-2

default value of, 3-14
Integer division operator (\), 6-3
Integers, 2-3
Interacting with applications, 9-13
Interacting with the user, 9-6
Intrinsic functions, see Built-in

functions
Is operator, 5-20
IsArray function, 3-30
IsDate function, 3-44
IsElement function, 3-35
IsList function, 3-35
Italic typeface, in syntax diagrams,

1-4
Iteration, see Loops

Index-4

J
Jumps, see Branching statements

K
Keywords, 2-5

documentation, 2-2
in code examples, 1-5
list of, 2-5
Me, 5-14
New, 5-15, 5-16
Preserve, 3-29

L
Labels, 2-5, 7-3

constructing, 2-5
LBound function, 3-26
Less than operator (<), 6-3, 6-11
Less than or equal operator (<= or

=<), 6-3, 6-11
Lifetime, 3-1
Like operator, 6-11, 6-13

wildcards, 6-13
Line-continuation character (_), 2-3,

2-7
Line Input # statement, 9-12
List data type, 3-3, 3-32
List tags, 3-32

case sensitivity, 3-34
Lists, 3-32

DataType function, 3-35
declaring, 3-33
Erase statement, 3-36
IsElement function, 3-35
IsList function, 3-35
list tags, 3-32
ListTag function, 3-35
TypeName function, 3-35

ListTag function, 3-35
Local variables, 4-8
LOF function, 9-10
Logical operators, see Operators
Long data type, 3-2

default value of, 3-14
Loop control variables

For statement, 7-24
ForAll statement, 7-32

Loop keyword, 7-20
Loops

Do loop, 7-19
For loop, 7-23
ForAll loop, 7-29

terminating, 7-16
While loop, 7-23

Lotus product classes, 9-1
bracket notation, 9-3
collection classes, 9-4
creating objects, 9-2
deleting objects, 9-4
dot (.) notation, 9-3
events, 9-3
methods, 9-3
properties, 9-3
referring to objects, 9-2

Lotus products
determining which is in use, 9-5
interacting with, 9-13

LotusScript constants, see Built-in
constants

LotusScript constants file, 9-8
LotusScript documentation, 1-1
LotusScript functions, see Built-in

Functions
LotusScript keywords, see Keywords
LotusScript statements

Call, 4-17
Date, 3-44
Declare, 4-4, 9-18
Deftype, 3-16
Delete, 5-21
Dim, 3-13, 3-21, 5-15
Do, 7-19
End, 7-18
Erase, 3-30, 3-36
Err, 8-2
Error, 8-2, 8-3
Exit, 7-16
For, 7-23
ForAll, 7-29
Get, 9-12
GoSub, 7-14
GoTo, 7-11
If...GoTo...Else, 7-11, 7-12
If...Then...Else, 7-4
If...Then...Elseif, 7-6
Input #, 9-11
Line Input #, 9-12
On...GoSub, 7-14
On...GoTo, 7-13
On Error, 8-3, 8-4, 8-7, 8-9
Open, 9-10
Option Base, 3-25
Print, 9-7
Print #, 9-11
Property Get, 4-21
Property Set, 4-21

Put, 9-10
ReDim, 3-29
Return, 7-14
Seek, 9-12
Select Case, 7-8
SendKeys, 9-13
Set, 5-15, 5-16, 5-17
Time, 3-45
Use, 2-8, 5-8
While, 7-23
With, 5-19
Write #, 9-11
Yield, 9-13

Lower bounds, 3-20
of fixed arrays, 3-24

LSCONST.LSS file, 3-4, 3-5, 9-8
LSERR.LSS file, 8-6
LSO files, 2-8, 5-8

M
Me keyword, 5-14
Member methods, see Methods
Member properties, see Properties
Member variables

conserving memory, 5-4
defining, 5-3, 5-9
referring to, 5-4

Members of classes
scope, 5-18

MessageBox function, 9-7
Methods, 5-7, 5-10

for Lotus product classes, 9-3
overriding, 5-24
referring to, 9-3

Minus sign (-), 6-3
Minute function, 3-44
Mod operator, 6-3
Module-level variables, 4-7
Modules

creating, 2-8
using, 2-8

Month function, 3-45
Multiline statements, 2-3
Multiple statements on a line, 2-3
Multiplication operator (*), 6-3

N
Named constants, 3-4
Names

of variables, 3-9
Names, see Identifiers
Nested For loops, 7-26

Index-5

New keyword, 5-15, 5-16
New sub, 4-19, 4-20, 5-12, 5-18, 5-28

calling, 5-29
Next keyword, 7-23
Not equal operator (<> or ><), 6-3,

6-11
Not operator, 6-3
NOTHING value, 3-4
Now function, 3-42, 3-45
NULL value, 3-4
Numbers

base 10, 2-3
base 16, 2-3
base 2, 2-3
base 8, 2-3

Numeric formats, 2-3
Numeric operators, see Operators

O
Object Linking and Embedding, 9-15
Object reference variables, 5-2, 5-8,

5-14, 5-17
declaring, 5-15

Object references, 3-3, 5-14, 5-20
as arguments, 5-31
in Variants, 5-17

Objects, 5-7, 5-31
as arguments, 5-31
binding, 5-14
bracket notation, 9-3
creating, 5-15, 5-16, 9-2
declaring object reference

variables, 5-15
deleting, 5-21, 9-4
for Lotus product classes, 9-1
memory management, 5-22
methods, 5-7
object reference variables, 5-14,

5-17
object references, 3-3, 5-14
referring to, 9-2
referring to members, 5-19

Octal numbers, 2-3
OLE automation, 9-15
On...GoSub statement, 7-14
On...GoTo statement, 7-13
On Error statement, 8-3, 8-4, 8-7, 8-9
One's complement, 6-3
Open statement, 9-10
Opening files, 9-10
Operators, 6-1

addition (+), 6-3
And, 6-3

arithmetic, 6-1, 6-3, 6-4
assignment, 6-2
associativity, 6-16
bitwise, 6-2, 6-3, 6-7
Boolean, 6-2, 6-3, 6-9
comparison, 6-3, 6-5, 6-11, 6-12
concatenation (& or +), 6-1, 6-11,

6-12
equal, 6-3, 6-11
Eqv, 6-3
exponentiation (^), 6-3
floating-point division (/), 6-3
greater than (>), 6-3, 6-11
greater than or equal (>= or =>),

6-3, 6-11
Imp, 6-3
integer division (\), 6-3
Is, 5-20
less than (<), 6-3, 6-11
less than or equal (<= or =<), 6-3,

6-11
Like, 6-11, 6-13
logical, 6-2, 6-3, 6-6
Mod, 6-3
multiplication (*), 6-3
Not, 6-3
not equal (<> or ><), 6-3, 6-11
numeric, 6-3
Or, 6-3
precedence, 6-16
relational, 6-2, 6-3, 6-5, 6-11, 6-12
string, 6-11
subtraction (-), 6-3
unary, 6-3
unary minus (-), 6-3
unary plus (+), 6-3
Xor, 6-3

Option Base statement, 3-25
Or operator, 6-3
Overriding methods, 5-24
Overriding properties, 5-24

P
Parameters, 4-7

actual parameters, 4-7
formal parameters, 4-7
see also Arguments

Parentheses (), 2-7
Passing arguments by reference, 4-7
Passing arguments by value, 4-7
Passing arguments to C functions,

9-18

Passing strings to C functions, 9-19
Percent sign (%), 2-6
Period (.), 2-7
Persistence, 3-1
PI value, 3-4
Plus sign (+), 6-3, 6-11
Pound sign (#), 2-6, 6-13
Precedence, of operators, 6-16
Predefined functions, see Built-in

Functions
Preserve keyword, 3-29
Print # statement, 9-11
Print statement, 9-7
Private class members, 5-13
Procedures, 4-1

functions, 4-1
in code examples, 1-5
methods, 5-10
names of, 2-4
overriding properties, 5-24
properties, 4-20, 5-10
subs, 4-16
terminating, 7-16, 7-18

Processing errors, 8-3
Product-specific constants, 3-5
Product classes, see Lotus product

classes
Products

determining which is in use, 9-5
Interacting with, 9-13

Properties, 4-20, 5-10
declaring, 4-21
defining, 4-21
for Lotus product classes, 9-3
names of, 2-4
overriding, 5-24
redefining, 5-26
referring to, 9-3

Property Get statement, 4-21
Property Set statement, 4-21
Public class members, 5-13
Punctuation, 2-6
Put statement, 9-10

Q
Question mark (?), 6-13
Quotation marks (" "), 2-3, 2-6
Quote, see Single quote
Quote ('), 2-7

Index-6

R
Random files, 9-9

reading, 9-12
Re-initializing a fixed array, 3-30
Reading files, 9-9, 9-10
Records

fixed-length, 9-12
variable-length, 9-11

Recovering storage, in dynamic
arrays, 3-30

Recursive functions, 4-15
Redefining methods, 5-26
Redefining properties, 5-26
ReDim statement, 3-29
Referring to class members, 5-18
Referring to member variables, 5-4
Referring to members of an object,

5-14, 5-19
Referring to methods, 9-3
Referring to objects, 9-2

bracket notation, 9-3
Referring to properties, 9-3
Relational operators, see Operators
Remainder, determining, 6-3
Remarks, see Comments
Removing objects, 9-4
Reserved words, 2-5
Resizing arrays, 3-29
Resume 0 keyword, 8-4, 8-12
Resume keyword, 8-4, 8-12
Resume Next keyword, 8-9, 8-11
Return statement, 7-14
Return values, of functions, 3-17, 4-11
Run-time errors, 8-1

S
Sample code

executing, 1-2
Scalar data types, 3-2

Currency, 3-3
Double, 3-2
Integer, 3-2
Long, 3-2
Single, 3-2
String, 3-3

Scientific notation, 2-3
Scope, 3-1

classes, 5-18
of classes, 5-13
of constants, 3-8

Script Debugger, 2-9
Script Editor, 2-2

Scripts, 2-1
binary numbers, 2-3
blank lines, 2-2
block statements, 7-2
branching statements, 7-2
breakpoints, 2-9
comments, 7-1
compiling, 2-7
continuing statements on

additional lines, 2-3
creating modules, 2-8
debugging, 2-9
declarations, 7-1
definition statements, 7-2
directives, 7-1
entering multiple statements on a

line, 2-3
events, 2-1
floating-point numbers, 2-3
flow of execution, 7-1
hexadecimal numbers, 2-3
identifiers, 2-4
integers, 2-3
keywords, 2-5
labels, 2-5, 7-3
names, 2-4
octal numbers, 2-3
punctuation, 2-6
scientific notation, 2-3
special characters, 2-6
statements, 2-2
stepping through, 2-9
strings, 2-3
using modules, 2-8
using numbers, 2-3
white space, 2-2

Second function, 3-45
Seek function, 9-12
Seek statement, 9-12
Select Case statement, 7-8
Semicolon (;), 2-7
SendKeys statement, 9-13
Sequential files, 9-9

reading, 9-10
writing, 9-11

Set statement, 5-15, 5-16, 5-17
Shadowing variables, 4-8
Shell function, 9-13
Single data type, 3-2

default value of, 3-14
Slash (/), 6-3
Spaces, 2-7
Special characters, 2-6
Square brackets ([]), 1-4, 6-13

Statement separator (:), 1-5, 2-3, 2-6
Statements

block statements, 7-2
branching statements, 7-2
comments, 7-1
declarations, 7-1
definition, 7-2
directives, 7-1
flow of execution, 7-1
labels, 7-3
see also LotusScript statements
syntax of, 2-2

Stepping through applications, 2-9
String data type, 3-3, 3-11

default value of, 3-14
String delimiters, 2-6

{ } (braces), 2-6
[] (brackets), 2-6
" " (double-quotes), 2-6

String length character (*), 2-6
String operators, see Operators, 6-11
Strings, 2-3, 3-11

delimiters, 2-3
fixed-length, 3-12, 3-14
variable-length, 3-14

Structured Type variables, 9-20
Sub Delete, 4-19, 4-20, 5-12, 5-21

calling, 5-29
Sub Initialize, 4-19, 4-20
Sub New, 4-19, 4-20, 5-12, 5-18, 5-28

calling, 5-29
Sub Terminate, 4-19, 4-20
Subprograms, see Subs
Subs, 4-16

declaring, 4-16
defining, 4-16
executing, 4-17
in a class, 5-10
names of, 2-4
overriding, 5-26
signature, 4-16
terminating, 7-16, 7-18
with multiple arguments, 4-19
with no arguments, 4-18
with one argument, 4-18

Subscripts
for arrays, 3-19, 3-26
for lists, 3-32

Subtraction operator (-), 6-3
Suffix characters, 2-4

& (ampersand), 2-6
@ (at sign), 2-6
$ (dollar sign), 2-6
! (exclamation point), 2-6

Index-7

% (percent sign), 2-6
(pound sign), 2-6
for constants, 3-7
omitting, 3-7

Syntax, of statements, 2-2
Syntax errors, 2-8

T
Terminate sub, 4-19, 4-20
Terminating functions, 7-16, 7-18
Terminating loops, 7-16
Terminating procedures, 7-16, 7-18
Terminating subs, 7-16, 7-18
Testing for data type, 3-7
Tilde (~), 2-5
Time and date values, 3-41
Time function, 3-45
Time statement, 3-45
TimeNumber function, 3-45
Timer function, 3-45
TimeValue function, 3-45
Today function, 3-45
TRUE value, 3-4, 3-40
Type variables, 9-20
TypeName function, 3-7, 3-31, 3-35
Typographical conventions, 1-4

U
Unary minus operator (-), 6-3
Unary plus operator (+), 6-3
Underscore (_), 1-5, 2-3, 2-7
Until keyword, 7-20
Upper bounds, 3-20

of fixed arrays, 3-24
Use statement, 2-8, 5-8
User-defined classes, 3-3
User-defined constants, 3-5
User-defined data types, 3-3, 5-1, 5-3,

5-9, 9-20
declaring, 5-4
defining, 5-3
names of, 2-4
referring to member variables, 5-4
using with files, 5-6

User interaction, 9-6
Using script modules, 2-8

V
Values

Boolean, 3-40
default data type of, 3-7

EMPTY, 3-4
FALSE, 3-4, 3-40
NOTHING, 3-4
NULL, 3-4
PI, 3-4
TRUE, 3-4, 3-40

Variable-length records, 9-11
Variable-length strings, 3-14
Variables, 3-1, 3-9

arrays, 3-19
data type of, 3-9
declaring explicitly, 3-9
declaring implicitly, 3-14
declaring object reference

variables, 5-15
declaring two or more at once,

3-13
declaring user-defined data types,

5-4
default value of, 3-14
defining member variables, 5-3,

5-9
environment, 9-13
in code examples, 1-5
in loop control expressions, 7-24
lifetime of, 3-1
lists, 3-32
local, 4-8
module-level, 4-7
name of, 3-9
names of, 2-4
object reference variables, 5-8,

5-14, 5-17
referring to member variables, 5-4
scope of, 3-1
shadowing, 4-8
string, 3-11
Variants, 3-37, 3-45

Variant data type, 3-3, 3-37, 5-17
Variants

date/time value, 3-41
referring to, 3-45
valid ranges for dates, 3-42

Vertical bar (|), 1-4
Vertical bars (| |), 2-3, 2-6

W
WeekDay function, 3-45
Wend keyword, 7-23
While loops, 7-23
While statement, 7-23
White space, 2-2, 2-7
Wildcards, for Like operator, 6-13

With statement, 5-19
Write # statement, 9-11
Writing files, 9-9, 9-10

X
Xor operator, 6-3

Y
Year function, 3-45
Yield function, 9-13
Yield statement, 9-13

Index-8

	Contents
	Chapter 1 Introduction
	Learning About LotusScript
	The LotusScript Programmer’s Guide
	Code examples in this book
	Typographical conventions

	Chapter 2 Creating, Compiling, and Debugging Scripts
	What Is a Script?
	Working in Your Script Editor
	Entering statements in your script editor
	Entering numbers
	Entering strings
	Entering identifiers
	Entering labels
	Entering keywords+
	Entering special characters

	Compiling Scripts
	Creating and using compiled script modules

	Debugging Your Application

	Chapter 3 Data Types, Constants, and Variables
	Summary of LotusScript Data Types
	Constants
	Built-in constants
	Constants defined in LSCONST.LSS
	Product-specific constants
	User-defined constants

	Variables
	Declaring scalar variables explicitly
	Declaring scalar variables implicitly
	More about scalar variables

	Arrays
	Fixed arrays
	Dynamic arrays

	Lists
	Working with lists

	Variants
	Boolean values
	Dates
	Referring to Variants
	Variants: a footnote on usage

	Data Type Conversion
	Explicit data type conversion
	Automatic data type conversion

	Chapter 4 Procedures: Functions, Subs, and Properties
	Functions
	Declaring and defining functions
	Declaring a function
	Defining a function
	Values that a function can manipulate
	Assigning a function a return value
	Executing a user-defined function

	Subs
	Declaring and defining subs
	Executing a sub
	Specialized subs

	Properties
	Declaring and defining properties
	Using properties

	Chapter 5 User-Defined Data Types and Classes
	Comparison of User-Defined Data Types and Classes
	User-Defined Data Types
	Defining user-defined data types
	Declaring a variable of a user-defined data type
	Referring to member variables
	Conserving memory when declaring member variables
	Working with data stored in files

	Classes
	Benefits of classes
	Types of classes

	Base classes
	Declaring member variables
	Defining member properties and methods
	About Public and Private class members
	Referring to class members inside a class's scope

	Creating, Managing, and Deleting Objects
	Working with object reference variables
	Initializing member variables
	Referring to class members outside of a class's scope
	Testing object references
	Deleting objects
	Managing memory for objects

	Derived Classes
	Defining derived classes
	Defining derived class members

	Arrays and Lists of Classes

	Chapter 6 Expressions and Operators
	Operators
	Numeric operators
	String operators
	Precedence and associativity

	Chapter 7 Directing Traffic Within an Application
	Flow of Execution
	Flow Control Statements
	If...Then...Else statement
	If...Then...ElseIf statement
	Select Case statement
	GoTo and If...GoTo...Else statements
	On...GoTo statement
	GoSub, On...GoSub, and Return statements
	Exit statement
	End statement
	Do statement
	While statement
	For statement
	ForAll statement

	Chapter 8 Error Processing
	Managing Run-Time Errors
	The On Error and Resume statements
	Informational functions: Err, Erl, Error, and Error$
	Managing the error number and message: the Err and Error statements
	How errors are handled

	Using the On Error and Resume Statements
	Error-number constants
	Multiple On Error statements
	On Error Resume Next

	Error-Handling Routines Outside Procedures
	Resuming execution in a calling procedure

	Using the Informational Functions

	Chapter 9 Reaching Out
	Working with Lotus products
	Product classes and objects
	Determining which product file is being used

	Interacting with the User
	Reading and Writing Files
	Opening files
	Reading from files and writing to them
	Closing files

	Interacting with Other Programs
	Functions and statements for interacting with other programs
	OLE Automation
	Dynamic Data Exchange (DDE)

	Calling C Functions
	Declaring C functions
	Passing arguments to C functions
	Extended example

	Index

